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Syntax And Semantics

Programming language syntax: how programs look, their
form and structure

Syntax is defined using a formal grammar

Programming language semantics: what programs do,
their behavior and meaning

Semantics is harder to define – more on this later
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An English Grammar

A sentence <S> is a noun
phrase <NP>, a verb <V>,
and a noun phrase <NP>.

A noun phrase <NP> is an
article <A> and a noun
<N>.

A verb <V> is . . .

An article <A> is . . .

A noun <N> is . . .

<S> ::= <NP> <V> <NP>

<NP> ::= <A> <N>

<V> ::= loves | hates | eats

<A> ::= a | the

<N> ::= dog | cat | rat
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How The Grammar Works

The grammar is a set of rules that say how to build a tree – a
parse tree

<S> at the root of the tree

The grammar’s rules define how children can be added at
any point in the tree

For instance, <S> ::= <NP> <V> <NP> defines the
sequence of nodes <NP>, <V>, and <NP> as children of <S>
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Parse Derivation

Grammar
<S> ::= <NP> <V> <NP>
<NP> ::= <A> <N>
<V> ::= loves | hates | eats
<A> ::= a | the
<N> ::= dog | cat | rat

Example (Derive <S> = the dog loves the cat)
<S> = <NP> <V> <NP>

= <A> <N> <V> <NP>
= <A> <N> <V> <A> <N>
= <A> <N> loves <A> <N>
= the <N> loves <A> <N>
= the dog loves <A> <N>
= the dog loves the <N>
= the dog loves the cat
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Parse Tree: the dog loves the cat

<S>

<NP>

<N>

cat

<A>

the

<V>

loves

<NP>

<N>

dog

<A>

the

Example
<S> = <NP> <V> <NP>

= <A> <N> loves <A> <N>
= the dog loves the cat
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Exercise

Grammar
<S> ::= <NP> <V> <NP>
<NP> ::= <A> <N>
<V> ::= loves | hates | eats
<A> ::= a | the
<N> ::= dog | cat | rat

Which of the following are valid <S>?
• the dog hates the dog
• dog loves the cat
• loves the dog the cat

Draw a parse tree for:
• a cat eats the rat
• the dog loves cat
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BNF Grammar Definition

Backus Naur Form of grammar consists of four parts:
• The set of tokens
• The set of non-terminal symbols
• The start symbol
• The set of productions
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BNF Explanation

tokens: dog, cat, ...

non-terminal symbols: <V>, <N>, ...

start symbol: <S>

a production: <NP> ::= <A> <N>

Example
<S> ::= <NP> <V> <NP>
<NP> ::= <A> <N>
<V> ::= loves | hates | eats
<A> ::= a | the
<N> ::= dog | cat | rat

School of Computing and Data Science - 11/51 - Frank Kreimendahl | kreimendahlf@wit.edu



Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

More BNF Definitions

The tokens are the smallest units of syntax
• Strings of one or more characters of program text
• They are atomic: not treated as being composed from smaller

parts
The non-terminal symbols stand for larger pieces of syntax

• They are strings enclosed in angle brackets, as in <NP>
• They are not strings that occur literally in program text
• The grammar says how they can be expanded into strings of

tokens

The start symbol is a single non-terminal that forms the root
of every parse tree for the grammar
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More BNF Definitions

The productions are the tree-building rules
• Each one has a left-hand side, the separator ::=, and a

right-hand side
• The left-hand side is a single non-terminal
• The right-hand side is a sequence of one or more things, each

of which can be either a token or a non-terminal
• A production gives one possible way of building a parse tree:

it permits the non-terminal symbol on the left-hand side to
have the symbols on the right-hand side, in order, as its
children in a parse tree
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Alternative Productions

When there is more than one production with the same
left-hand side, an abbreviated form can be used
In BNF grammar:

• Gives the left-hand side (symbol),
• the separator ::=,
• and then a list of possible right-hand sides separated by the

special symbol |
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Example (Production)
<exp> ::= <exp> + <exp> | ( <exp> ) | a | b | c

Example (Equivalent Productions)
<exp> ::= <exp> + <exp>
<exp> ::= ( <exp> )
<exp> ::= a
<exp> ::= b
<exp> ::= c
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Empty

The special non-terminal <empty> is for places where you
want the grammar to generate nothing

For example, this grammar defines a typical if-then construct
with an optional else part:

Example
<if-stmt> ::= if <expr> then <stmt> <else-part>
<else-part> ::= else <stmt> | <empty>
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Grammar Parse Derivation

1 Begin with a start symbol
2 Choose a production P with non-terminal N on its left-hand side
3 Replace N with the right-hand side of P

4 Choose a non-terminal N in resulting string
5 If non-terminals remain, GOTO step 2

Example
<S> = <NP> <V> <NP>

= <A> <N> <V> <NP>
= <A> <N> <V> <A> <N>
= <A> <N> eats <A> <N>
= a <N> eats <A> <N>
= a cat eats <A> <N>
= a cat eats the <N>
= a cat eats the rat
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To build a parse tree, put the start symbol at the root

Add children to every non-terminal, following any one of the
productions for that non-terminal in the grammar

Done when all the leaves are tokens

Read off leaves from left to right – that is the string derived
by the tree
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Example (Grammar)
<S> ::= <NP> <V> <NP>
<NP>::= <A> <N>
<V> ::= loves | hates | eats
<A> ::= a | the
<N> ::= dog | cat | rat

<S>

<NP>

<N>

<N>

<N>

<N>

<N>

rat

<A>

<A>

<A>

<A>

the

<V>

<V>

<V>

<V>

eats

<NP>

<N>

<N>

cat

<A>

a
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A Programming Language Grammar

An expression can be:
• the sum of two expressions,
• or the product of two expressions,
• or a parenthesized subexpression,
• or a,
• or b,
• or c

Example
<exp> ::= <exp> + <exp> | <exp> * <exp> | ( <exp> ) | a | b | c
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Parse and Parse Tree: a+b*c

Example
<exp> = <exp> + <exp>

= a + <exp>
= a + <exp> * <exp>
= a + b * c

<exp>

<exp>

<exp>

c

*<exp>

b

+<exp>

a
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Parse and Parse Tree: ((a+b)*c)

Example
<exp> = ( <exp> )

= ( <exp> * <exp> )
= (( <exp> ) * <exp> )
= (( <exp> ) * c )
= (( <exp> + <exp> ) * c )
= (( a + b ) * c )

<exp>

)<exp>

<exp>

c

*<exp>

)<exp>

<exp>

b

+<exp>

a

(

(
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Exercise

Grammar
<exp> ::= <exp> + <exp> | <exp> * <exp> | ( <exp> ) | a | b | c

Give the parse tree for each of these strings:
• a+b
• a*b+c
• (a+b)*c
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Compiler Note

What we just did is parsing: trying to find a parse tree for a
given string

That’s what compilers do for every program you try to
compile: try to build a parse tree for your program, using the
grammar for whatever language you used

Grammars are designed to be non-ambiguous: for each
string, there is at most one valid parse tree

There are efficient parsing algorithms for this specific
purpose
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Language Definition

We use grammars to define the syntax of programming
languages

The language defined by a grammar is the set of all strings
that can be derived by some parse tree for the grammar

As in the previous example, that set is often infinite (though
grammars are finite)

Constructing grammars is a little like programming. . .
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Constructing Grammars

The most important trick: divide and conquer
Example: the language of Java declarations:

• a type name,
• a list of variables separated by commas,
• and a semicolon

Each variable can optionally be followed by an initializer

Example (Java declarations)
float a;
boolean a,b,c;
int a=1, b, c=1+2;
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Java Example

Parsing int a=1, b, c=1+2;

Defining a declaration is easy if we postpone defining the
comma-separated list of variables with initializers:

• <var-dec> ::= <type-name> <declarator-list> ;

Primitive type names are easy enough too:
• <type-name> ::= boolean | byte | short | int |
long | char | float | double

(Note: skipping constructed types: class names, interface
names, and array types)
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Example, Continued

That leaves the comma-separated list of variables with
initializers
Again, postpone defining variables with initializers, and just
do the comma-separated list part:

• <var-dec> ::= <type-name> <declarator-list> ;
• <declarator-list> ::= <declarator> |
<declarator> , <declarator-list>
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Example, Continued

That leaves the variables with initializers:
• <var-dec> ::= <type-name> <declarator-list> ;
• <declarator-list> ::= <declarator> |
<declarator> , <declarator-list>

• <declarator> ::= <variable-name> |
<variable-name> = <expr>

For full Java, we would need to allow pairs of square
brackets after the variable name

There is also a syntax for array initializers

And definitions for <variable-name> and <expr>
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Grammar Construction Example

1 Construct a grammar in BNF for each language:
2 <digit> as a character 0-9.

• <digit> ::= 0|1|2|3|4|5|6|7|8|9

3 <unsigned> as the set of all strings with one or more
<digit>. Note the left-recursion.

• <unsigned> ::= <digit> | <unsigned> <digit>

4 <signed> as the set of all strings starting with − or + and
followed by an <unsigned>.

• <signed> ::= +<unsigned> | -<unsigned>
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Parse 321 as <unsigned>

<unsigned>

<digit>

1

<unsigned>

<digit>

2

<unsigned>

<digit>

3
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Exercise

Construct production rules in BNF for each specification:

<integer> as any strings of <signed> or <unsigned>.

<decimal> as any strings of <integer> followed by a ‘.’
and optionally followed by an <unsigned>.

<2or3digits> as any strings of two or three <digit>.

Example
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<unsigned> ::= <digit> | <unsigned> <digit>
<signed> ::= +<unsigned> | -<unsigned>
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Exercise

Construct production rules in BNF for each specification:

<2's> as any strings of one or more 2’s.

<1+2's> as any strings beginning with ‘1’ and followed by
any number of 2’s.

<2's+1> as any strings beginning with any number of 2’s
and followed by a ‘1’.

<AdigitBs> as any strings beginning with ‘A’ and
optionally followed by any number of <digit> or ‘B’.

Example
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<unsigned> ::= <digit> | <unsigned> <digit>
<signed> ::= +<unsigned> | -<unsigned>
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Where Do Tokens Come From?

Tokens are pieces of program text that we think of as atomic
and holding specific meaning

Identifiers (count), keywords (if), operators (==), constants
(123.4), etc.

Programs stored in files are just sequences of characters

How is such a file divided into a sequence of tokens?
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Lexical Structure And Phrase Structure

Phrase structure: how a program is built from a sequence of
tokens

Lexical structure: how tokens are built from a sequence of
characters

Example (Phrase Structure)
<if-stmt> ::= if <expr> then <stmt> <else-part>
<else-part> ::= else <stmt> | <empty>

Example (Lexical Structure)
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<unsigned> ::= <digit> | <unsigned> <digit>
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One Grammar For Both

You could do it all with one grammar by using characters as
the only tokens

Not done in practice: things like white space and comments
would make the grammar too messy to be readable

Example
<if-stmt> ::= if <white-space> <expr> <white-space>

then <white-space>
<stmt> <white-space> <else-part>

<else-part> ::= else <white-space> <stmt> | <empty>
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Separate Grammars

Usually there are two separate grammars
• One says how to construct a sequence of tokens from a file of

characters
• One says how to construct a parse tree from a sequence of

tokens

Example
<prog-file> ::= <end-of-file> | <element> <prog-file>
<element> ::= <token> | <one-white-space> | <comment>
<one-white-space> ::= <space> | <tab> | <end-of-line>
<token> ::= <identifier> | <operator> | <constant> | ...

School of Computing and Data Science - 39/51 - Frank Kreimendahl | kreimendahlf@wit.edu



Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure
Where Do Tokens
Come From?

Structure

Full Grammar

Separate Grammars

Separate Compiler
Passes

Exercise

Early Languages

Grammar
Forms

Separate Compiler Passes

The scanner reads the input file and divides it into tokens
according to the lexical grammar

The scanner discards white space and comments

The parser constructs a parse tree (or at least goes through
the motions – more about this later) from the token stream
according to the language grammar
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Exercise

Lexical Grammar
<space> ::=
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<unsigned> ::= <digit> | <unsigned> <digit>
<signed> ::= +<unsigned> | -<unsigned>
<integer> ::= <signed> | <unsigned>
<decimal> ::= <integer>.<unsigned> | <integer> .
<operator> ::= + | == | =
<identifier> ::= x | y
<constant> ::= <integer> | <decimal>
<keyword> ::= if | then | endif

What is the scanner output for if x == 3.14 then y = x + y
endif ?
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Early Languages

Early languages sometimes did not separate lexical structure
from phrase structure

• Early Fortran and Algol dialects allowed spaces anywhere,
even in the middle of a keyword

• Other languages like PL/I allow keywords to be used as
identifiers

This makes them harder to scan and parse

It also reduces readability
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Early Languages

Some languages have a fixed-format lexical structure –
column positions are significant

• One statement per line (i.e. per card)
• First few columns for statement label

Early dialects of Fortran, Cobol, and Basic

Almost all modern languages are free-format: column
positions are ignored
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BNF Variations

Some use → or = instead of ::=

Some leave out the angle brackets and use a distinct typeface
for tokens

Some allow single quotes around tokens, for example to
distinguish ‘|’ as a token from | as a meta-symbol
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EBNF Variations

Additional syntax to simplify some grammar chores:
• {x} or x* to mean zero or more repetitions of x
• x+ to mean one or more repetitions of x
• [x] to mean x is optional (i.e. x | <empty>)
• ( ) for grouping
• | anywhere to mean a choice among alternatives
• Quotes around tokens, if necessary, to distinguish from all

these meta-symbols
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EBNF Examples

Example
<if-stmt> ::= if <expr> then <stmt> [else <stmt>]
<stmt-list> ::= {<stmt> ;}
<thing-list> ::= { (<stmt> | <declaration>) ;}
<unsigned> ::= <digit>+
<signed> ::= (+|-)<unsigned>

Anything that extends BNF this way is called an Extended
BNF: EBNF
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Formal Context-Free Grammars

In the study of formal languages and automata, grammars
are expressed in yet another notation

These are called context-free grammars because children of
a node only depend on that node’s non-terminal symbol, not
on the context of neighboring nodes in the tree.

Context sensitive language elements include scope but is not
generally part of a grammar.

Other kinds of grammars exist: regular grammars (weaker),
context-sensitive grammars (stronger), etc.

S → aSb|X S is a string of symbols a S b or X
X → cX|ε X is a string of symbols c X or empty
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Example
Java Language Specification

WhileStatement:
while ( Expression ) Statement

DoStatement:
do Statement while ( Expression ) ;

ForStatement:
for ( ForInitopt ; Expressionopt ; ForUpdateopt)

Statement
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Conclusions

We use grammars to define programming language syntax,
both lexical structure and phrase structure

Connection between theory and practice

Two grammars, two compiler passes

Parser-generator programs can write code for those two
passes automatically from grammars
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Audiences

Multiple audiences for a grammar
• Novices want to find out what legal programs look like
• Experts – advanced users and language system implementers

– want an exact, detailed definition
• Tools – parser and scanner generators want an exact, detailed

definition in a particular, machine-readable form
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