
Program
Syntax
Syntax And Semantics

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure

Grammar
Forms

Program Syntax

School of Computing and Data Science - 1/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax
Syntax And Semantics

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure

Grammar
Forms

Syntax And Semantics

Programming language syntax: how programs look, their
form and structure

Syntax is defined using a formal grammar

Programming language semantics: what programs do,
their behavior and meaning

Semantics is harder to define – more on this later

School of Computing and Data Science - 2/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees
An English Grammar

Grammar Rules

Parse Derivation

Parse Tree

Exercise

BNF

Constructing
Grammars

Structure

Grammar
Forms

Grammar and Parse Trees

School of Computing and Data Science - 3/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees
An English Grammar

Grammar Rules

Parse Derivation

Parse Tree

Exercise

BNF

Constructing
Grammars

Structure

Grammar
Forms

An English Grammar

A sentence <S> is a noun
phrase <NP>, a verb <V>,
and a noun phrase <NP>.

A noun phrase <NP> is an
article <A> and a noun
<N>.

A verb <V> is . . .

An article <A> is . . .

A noun <N> is . . .

<S> ::= <NP> <V> <NP>

<NP> ::= <A> <N>

<V> ::= loves | hates | eats

<A> ::= a | the

<N> ::= dog | cat | rat

School of Computing and Data Science - 4/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees
An English Grammar

Grammar Rules

Parse Derivation

Parse Tree

Exercise

BNF

Constructing
Grammars

Structure

Grammar
Forms

How The Grammar Works

The grammar is a set of rules that say how to build a tree – a
parse tree

<S> at the root of the tree

The grammar’s rules define how children can be added at
any point in the tree

For instance, <S> ::= <NP> <V> <NP> defines the
sequence of nodes <NP>, <V>, and <NP> as children of <S>

School of Computing and Data Science - 5/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees
An English Grammar

Grammar Rules

Parse Derivation

Parse Tree

Exercise

BNF

Constructing
Grammars

Structure

Grammar
Forms

Parse Derivation

Grammar
<S> ::= <NP> <V> <NP>
<NP> ::= <A> <N>
<V> ::= loves | hates | eats
<A> ::= a | the
<N> ::= dog | cat | rat

Example (Derive <S> = the dog loves the cat)
<S> = <NP> <V> <NP>

= <A> <N> <V> <NP>
= <A> <N> <V> <A> <N>
= <A> <N> loves <A> <N>
= the <N> loves <A> <N>
= the dog loves <A> <N>
= the dog loves the <N>
= the dog loves the cat

School of Computing and Data Science - 6/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees
An English Grammar

Grammar Rules

Parse Derivation

Parse Tree

Exercise

BNF

Constructing
Grammars

Structure

Grammar
Forms

Parse Tree: the dog loves the cat

<S>

<NP>

<N>

cat

<A>

the

<V>

loves

<NP>

<N>

dog

<A>

the

Example
<S> = <NP> <V> <NP>

= <A> <N> loves <A> <N>
= the dog loves the cat

School of Computing and Data Science - 7/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees
An English Grammar

Grammar Rules

Parse Derivation

Parse Tree

Exercise

BNF

Constructing
Grammars

Structure

Grammar
Forms

Exercise

Grammar
<S> ::= <NP> <V> <NP>
<NP> ::= <A> <N>
<V> ::= loves | hates | eats
<A> ::= a | the
<N> ::= dog | cat | rat

Which of the following are valid <S>?
• the dog hates the dog
• dog loves the cat
• loves the dog the cat

Draw a parse tree for:
• a cat eats the rat
• the dog loves cat

School of Computing and Data Science - 8/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

BNF

School of Computing and Data Science - 9/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

BNF Grammar Definition

Backus Naur Form of grammar consists of four parts:
• The set of tokens
• The set of non-terminal symbols
• The start symbol
• The set of productions

School of Computing and Data Science - 10/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

BNF Explanation

tokens: dog, cat, ...

non-terminal symbols: <V>, <N>, ...

start symbol: <S>

a production: <NP> ::= <A> <N>

Example
<S> ::= <NP> <V> <NP>
<NP> ::= <A> <N>
<V> ::= loves | hates | eats
<A> ::= a | the
<N> ::= dog | cat | rat

School of Computing and Data Science - 11/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

More BNF Definitions

The tokens are the smallest units of syntax
• Strings of one or more characters of program text
• They are atomic: not treated as being composed from smaller

parts
The non-terminal symbols stand for larger pieces of syntax

• They are strings enclosed in angle brackets, as in <NP>
• They are not strings that occur literally in program text
• The grammar says how they can be expanded into strings of

tokens

The start symbol is a single non-terminal that forms the root
of every parse tree for the grammar

School of Computing and Data Science - 12/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

More BNF Definitions

The productions are the tree-building rules
• Each one has a left-hand side, the separator ::=, and a

right-hand side
• The left-hand side is a single non-terminal
• The right-hand side is a sequence of one or more things, each

of which can be either a token or a non-terminal
• A production gives one possible way of building a parse tree:

it permits the non-terminal symbol on the left-hand side to
have the symbols on the right-hand side, in order, as its
children in a parse tree

School of Computing and Data Science - 13/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

Alternative Productions

When there is more than one production with the same
left-hand side, an abbreviated form can be used
In BNF grammar:

• Gives the left-hand side (symbol),
• the separator ::=,
• and then a list of possible right-hand sides separated by the

special symbol |

School of Computing and Data Science - 14/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

Example

Example (Production)
<exp> ::= <exp> + <exp> | (<exp>) | a | b | c

Example (Equivalent Productions)
<exp> ::= <exp> + <exp>
<exp> ::= (<exp>)
<exp> ::= a
<exp> ::= b
<exp> ::= c

School of Computing and Data Science - 15/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

Empty

The special non-terminal <empty> is for places where you
want the grammar to generate nothing

For example, this grammar defines a typical if-then construct
with an optional else part:

Example
<if-stmt> ::= if <expr> then <stmt> <else-part>
<else-part> ::= else <stmt> | <empty>

School of Computing and Data Science - 16/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

Grammar Parse Derivation

1 Begin with a start symbol
2 Choose a production P with non-terminal N on its left-hand side
3 Replace N with the right-hand side of P

4 Choose a non-terminal N in resulting string
5 If non-terminals remain, GOTO step 2

Example
<S> = <NP> <V> <NP>

= <A> <N> <V> <NP>
= <A> <N> <V> <A> <N>
= <A> <N> eats <A> <N>
= a <N> eats <A> <N>
= a cat eats <A> <N>
= a cat eats the <N>
= a cat eats the rat

School of Computing and Data Science - 17/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

Parse Trees

To build a parse tree, put the start symbol at the root

Add children to every non-terminal, following any one of the
productions for that non-terminal in the grammar

Done when all the leaves are tokens

Read off leaves from left to right – that is the string derived
by the tree

School of Computing and Data Science - 18/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

Example

Example (Grammar)
<S> ::= <NP> <V> <NP>
<NP>::= <A> <N>
<V> ::= loves | hates | eats
<A> ::= a | the
<N> ::= dog | cat | rat

<S>

<NP>

<N>

<N>

<N>

<N>

<N>

rat

<A>

<A>

<A>

<A>

the

<V>

<V>

<V>

<V>

eats

<NP>

<N>

<N>

cat

<A>

a

School of Computing and Data Science - 19/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

A Programming Language Grammar

An expression can be:
• the sum of two expressions,
• or the product of two expressions,
• or a parenthesized subexpression,
• or a,
• or b,
• or c

Example
<exp> ::= <exp> + <exp> | <exp> * <exp> | (<exp>) | a | b | c

School of Computing and Data Science - 20/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

Parse and Parse Tree: a+b*c

Example
<exp> = <exp> + <exp>

= a + <exp>
= a + <exp> * <exp>
= a + b * c

<exp>

<exp>

<exp>

c

*<exp>

b

+<exp>

a

School of Computing and Data Science - 21/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

Parse and Parse Tree: ((a+b)*c)

Example
<exp> = (<exp>)

= (<exp> * <exp>)
= ((<exp>) * <exp>)
= ((<exp>) * c)
= ((<exp> + <exp>) * c)
= ((a + b) * c)

<exp>

)<exp>

<exp>

c

*<exp>

)<exp>

<exp>

b

+<exp>

a

(

(

School of Computing and Data Science - 22/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

Exercise

Grammar
<exp> ::= <exp> + <exp> | <exp> * <exp> | (<exp>) | a | b | c

Give the parse tree for each of these strings:
• a+b
• a*b+c
• (a+b)*c

School of Computing and Data Science - 23/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

Compiler Note

What we just did is parsing: trying to find a parse tree for a
given string

That’s what compilers do for every program you try to
compile: try to build a parse tree for your program, using the
grammar for whatever language you used

Grammars are designed to be non-ambiguous: for each
string, there is at most one valid parse tree

There are efficient parsing algorithms for this specific
purpose

School of Computing and Data Science - 24/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF
BNF Definition

More BNF

Alternative Productions

Example

Empty

Parse Derivation

Parse Trees

Example

A Programming
Language Grammar

Exercise

Compiler Note

Language Definition

Constructing
Grammars

Structure

Grammar
Forms

Language Definition

We use grammars to define the syntax of programming
languages

The language defined by a grammar is the set of all strings
that can be derived by some parse tree for the grammar

As in the previous example, that set is often infinite (though
grammars are finite)

Constructing grammars is a little like programming. . .

School of Computing and Data Science - 25/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars
Constructing
Grammars

Java Example

Grammar Construction
Example

Parse 321

Exercise

Structure

Grammar
Forms

Constructing Grammars

School of Computing and Data Science - 26/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars
Constructing
Grammars

Java Example

Grammar Construction
Example

Parse 321

Exercise

Structure

Grammar
Forms

Constructing Grammars

The most important trick: divide and conquer
Example: the language of Java declarations:

• a type name,
• a list of variables separated by commas,
• and a semicolon

Each variable can optionally be followed by an initializer

Example (Java declarations)
float a;
boolean a,b,c;
int a=1, b, c=1+2;

School of Computing and Data Science - 27/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars
Constructing
Grammars

Java Example

Grammar Construction
Example

Parse 321

Exercise

Structure

Grammar
Forms

Java Example

Parsing int a=1, b, c=1+2;

Defining a declaration is easy if we postpone defining the
comma-separated list of variables with initializers:

• <var-dec> ::= <type-name> <declarator-list> ;

Primitive type names are easy enough too:
• <type-name> ::= boolean | byte | short | int |
long | char | float | double

(Note: skipping constructed types: class names, interface
names, and array types)

School of Computing and Data Science - 28/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars
Constructing
Grammars

Java Example

Grammar Construction
Example

Parse 321

Exercise

Structure

Grammar
Forms

Example, Continued

That leaves the comma-separated list of variables with
initializers
Again, postpone defining variables with initializers, and just
do the comma-separated list part:

• <var-dec> ::= <type-name> <declarator-list> ;
• <declarator-list> ::= <declarator> |
<declarator> , <declarator-list>

School of Computing and Data Science - 29/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars
Constructing
Grammars

Java Example

Grammar Construction
Example

Parse 321

Exercise

Structure

Grammar
Forms

Example, Continued

That leaves the variables with initializers:
• <var-dec> ::= <type-name> <declarator-list> ;
• <declarator-list> ::= <declarator> |
<declarator> , <declarator-list>

• <declarator> ::= <variable-name> |
<variable-name> = <expr>

For full Java, we would need to allow pairs of square
brackets after the variable name

There is also a syntax for array initializers

And definitions for <variable-name> and <expr>

School of Computing and Data Science - 30/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars
Constructing
Grammars

Java Example

Grammar Construction
Example

Parse 321

Exercise

Structure

Grammar
Forms

Grammar Construction Example

1 Construct a grammar in BNF for each language:
2 <digit> as a character 0-9.

• <digit> ::= 0|1|2|3|4|5|6|7|8|9

3 <unsigned> as the set of all strings with one or more
<digit>. Note the left-recursion.

• <unsigned> ::= <digit> | <unsigned> <digit>

4 <signed> as the set of all strings starting with − or + and
followed by an <unsigned>.

• <signed> ::= +<unsigned> | -<unsigned>

School of Computing and Data Science - 31/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars
Constructing
Grammars

Java Example

Grammar Construction
Example

Parse 321

Exercise

Structure

Grammar
Forms

Parse 321 as <unsigned>

<unsigned>

<digit>

1

<unsigned>

<digit>

2

<unsigned>

<digit>

3

School of Computing and Data Science - 32/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars
Constructing
Grammars

Java Example

Grammar Construction
Example

Parse 321

Exercise

Structure

Grammar
Forms

Exercise

Construct production rules in BNF for each specification:

<integer> as any strings of <signed> or <unsigned>.

<decimal> as any strings of <integer> followed by a ‘.’
and optionally followed by an <unsigned>.

<2or3digits> as any strings of two or three <digit>.

Example
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<unsigned> ::= <digit> | <unsigned> <digit>
<signed> ::= +<unsigned> | -<unsigned>

School of Computing and Data Science - 33/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars
Constructing
Grammars

Java Example

Grammar Construction
Example

Parse 321

Exercise

Structure

Grammar
Forms

Exercise

Construct production rules in BNF for each specification:

<2's> as any strings of one or more 2’s.

<1+2's> as any strings beginning with ‘1’ and followed by
any number of 2’s.

<2's+1> as any strings beginning with any number of 2’s
and followed by a ‘1’.

<AdigitBs> as any strings beginning with ‘A’ and
optionally followed by any number of <digit> or ‘B’.

Example
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<unsigned> ::= <digit> | <unsigned> <digit>
<signed> ::= +<unsigned> | -<unsigned>

School of Computing and Data Science - 34/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure
Where Do Tokens
Come From?

Structure

Full Grammar

Separate Grammars

Separate Compiler
Passes

Exercise

Early Languages

Grammar
Forms

Structure

School of Computing and Data Science - 35/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure
Where Do Tokens
Come From?

Structure

Full Grammar

Separate Grammars

Separate Compiler
Passes

Exercise

Early Languages

Grammar
Forms

Where Do Tokens Come From?

Tokens are pieces of program text that we think of as atomic
and holding specific meaning

Identifiers (count), keywords (if), operators (==), constants
(123.4), etc.

Programs stored in files are just sequences of characters

How is such a file divided into a sequence of tokens?

School of Computing and Data Science - 36/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure
Where Do Tokens
Come From?

Structure

Full Grammar

Separate Grammars

Separate Compiler
Passes

Exercise

Early Languages

Grammar
Forms

Lexical Structure And Phrase Structure

Phrase structure: how a program is built from a sequence of
tokens

Lexical structure: how tokens are built from a sequence of
characters

Example (Phrase Structure)
<if-stmt> ::= if <expr> then <stmt> <else-part>
<else-part> ::= else <stmt> | <empty>

Example (Lexical Structure)
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<unsigned> ::= <digit> | <unsigned> <digit>

School of Computing and Data Science - 37/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure
Where Do Tokens
Come From?

Structure

Full Grammar

Separate Grammars

Separate Compiler
Passes

Exercise

Early Languages

Grammar
Forms

One Grammar For Both

You could do it all with one grammar by using characters as
the only tokens

Not done in practice: things like white space and comments
would make the grammar too messy to be readable

Example
<if-stmt> ::= if <white-space> <expr> <white-space>

then <white-space>
<stmt> <white-space> <else-part>

<else-part> ::= else <white-space> <stmt> | <empty>

School of Computing and Data Science - 38/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure
Where Do Tokens
Come From?

Structure

Full Grammar

Separate Grammars

Separate Compiler
Passes

Exercise

Early Languages

Grammar
Forms

Separate Grammars

Usually there are two separate grammars
• One says how to construct a sequence of tokens from a file of

characters
• One says how to construct a parse tree from a sequence of

tokens

Example
<prog-file> ::= <end-of-file> | <element> <prog-file>
<element> ::= <token> | <one-white-space> | <comment>
<one-white-space> ::= <space> | <tab> | <end-of-line>
<token> ::= <identifier> | <operator> | <constant> | ...

School of Computing and Data Science - 39/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure
Where Do Tokens
Come From?

Structure

Full Grammar

Separate Grammars

Separate Compiler
Passes

Exercise

Early Languages

Grammar
Forms

Separate Compiler Passes

The scanner reads the input file and divides it into tokens
according to the lexical grammar

The scanner discards white space and comments

The parser constructs a parse tree (or at least goes through
the motions – more about this later) from the token stream
according to the language grammar

School of Computing and Data Science - 40/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure
Where Do Tokens
Come From?

Structure

Full Grammar

Separate Grammars

Separate Compiler
Passes

Exercise

Early Languages

Grammar
Forms

Exercise

Lexical Grammar
<space> ::=
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<unsigned> ::= <digit> | <unsigned> <digit>
<signed> ::= +<unsigned> | -<unsigned>
<integer> ::= <signed> | <unsigned>
<decimal> ::= <integer>.<unsigned> | <integer> .
<operator> ::= + | == | =
<identifier> ::= x | y
<constant> ::= <integer> | <decimal>
<keyword> ::= if | then | endif

What is the scanner output for if x == 3.14 then y = x + y
endif ?

School of Computing and Data Science - 41/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure
Where Do Tokens
Come From?

Structure

Full Grammar

Separate Grammars

Separate Compiler
Passes

Exercise

Early Languages

Grammar
Forms

Early Languages

Early languages sometimes did not separate lexical structure
from phrase structure

• Early Fortran and Algol dialects allowed spaces anywhere,
even in the middle of a keyword

• Other languages like PL/I allow keywords to be used as
identifiers

This makes them harder to scan and parse

It also reduces readability

School of Computing and Data Science - 42/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure
Where Do Tokens
Come From?

Structure

Full Grammar

Separate Grammars

Separate Compiler
Passes

Exercise

Early Languages

Grammar
Forms

Early Languages

Some languages have a fixed-format lexical structure –
column positions are significant

• One statement per line (i.e. per card)
• First few columns for statement label

Early dialects of Fortran, Cobol, and Basic

Almost all modern languages are free-format: column
positions are ignored

School of Computing and Data Science - 43/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure

Grammar
Forms
BNF Variations

EBNF Variations

EBNF Examples

Formal CFGs

Example

Conclusions

Audiences

Grammar Forms

School of Computing and Data Science - 44/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure

Grammar
Forms
BNF Variations

EBNF Variations

EBNF Examples

Formal CFGs

Example

Conclusions

Audiences

BNF Variations

Some use → or = instead of ::=

Some leave out the angle brackets and use a distinct typeface
for tokens

Some allow single quotes around tokens, for example to
distinguish ‘|’ as a token from | as a meta-symbol

School of Computing and Data Science - 45/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure

Grammar
Forms
BNF Variations

EBNF Variations

EBNF Examples

Formal CFGs

Example

Conclusions

Audiences

EBNF Variations

Additional syntax to simplify some grammar chores:
• {x} or x* to mean zero or more repetitions of x
• x+ to mean one or more repetitions of x
• [x] to mean x is optional (i.e. x | <empty>)
• () for grouping
• | anywhere to mean a choice among alternatives
• Quotes around tokens, if necessary, to distinguish from all

these meta-symbols

School of Computing and Data Science - 46/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure

Grammar
Forms
BNF Variations

EBNF Variations

EBNF Examples

Formal CFGs

Example

Conclusions

Audiences

EBNF Examples

Example
<if-stmt> ::= if <expr> then <stmt> [else <stmt>]
<stmt-list> ::= {<stmt> ;}
<thing-list> ::= { (<stmt> | <declaration>) ;}
<unsigned> ::= <digit>+
<signed> ::= (+|-)<unsigned>

Anything that extends BNF this way is called an Extended
BNF: EBNF

School of Computing and Data Science - 47/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure

Grammar
Forms
BNF Variations

EBNF Variations

EBNF Examples

Formal CFGs

Example

Conclusions

Audiences

Formal Context-Free Grammars

In the study of formal languages and automata, grammars
are expressed in yet another notation

These are called context-free grammars because children of
a node only depend on that node’s non-terminal symbol, not
on the context of neighboring nodes in the tree.

Context sensitive language elements include scope but is not
generally part of a grammar.

Other kinds of grammars exist: regular grammars (weaker),
context-sensitive grammars (stronger), etc.

S → aSb|X S is a string of symbols a S b or X
X → cX|ε X is a string of symbols c X or empty

School of Computing and Data Science - 48/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure

Grammar
Forms
BNF Variations

EBNF Variations

EBNF Examples

Formal CFGs

Example

Conclusions

Audiences

Example

Example
Java Language Specification

WhileStatement:
while (Expression) Statement

DoStatement:
do Statement while (Expression) ;

ForStatement:
for (ForInitopt ; Expressionopt ; ForUpdateopt)

Statement

School of Computing and Data Science - 49/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure

Grammar
Forms
BNF Variations

EBNF Variations

EBNF Examples

Formal CFGs

Example

Conclusions

Audiences

Conclusions

We use grammars to define programming language syntax,
both lexical structure and phrase structure

Connection between theory and practice

Two grammars, two compiler passes

Parser-generator programs can write code for those two
passes automatically from grammars

School of Computing and Data Science - 50/51 - Frank Kreimendahl | kreimendahlf@wit.edu

Program
Syntax

Grammar and
Parse Trees

BNF

Constructing
Grammars

Structure

Grammar
Forms
BNF Variations

EBNF Variations

EBNF Examples

Formal CFGs

Example

Conclusions

Audiences

Audiences

Multiple audiences for a grammar
• Novices want to find out what legal programs look like
• Experts – advanced users and language system implementers

– want an exact, detailed definition
• Tools – parser and scanner generators want an exact, detailed

definition in a particular, machine-readable form

School of Computing and Data Science - 51/51 - Frank Kreimendahl | kreimendahlf@wit.edu

	Program Syntax
	Syntax And Semantics

	Grammar and Parse Trees
	An English Grammar
	Grammar Rules
	Parse Derivation
	Parse Tree
	Exercise

	BNF
	BNF Definition
	More BNF
	Alternative Productions
	Example
	Empty
	Parse Derivation
	Parse Trees
	Example
	A Programming Language Grammar
	Exercise
	Compiler Note
	Language Definition

	Constructing Grammars
	Constructing Grammars
	Java Example
	Grammar Construction Example
	Parse 321
	Exercise

	Structure
	Where Do Tokens Come From?
	Structure
	Full Grammar
	Separate Grammars
	Separate Compiler Passes
	Exercise
	Early Languages

	Grammar Forms
	BNF Variations
	EBNF Variations
	EBNF Examples
	Formal CFGs
	Example
	Conclusions
	Audiences

