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Functions as Parameters

Functions as

Example (C# function passing)

delegate int func(int x);
int comp(func f, int z) { return f(z); %}
int sq(int x) { return x*x; }

static void Main(){ comp(sq, 4); } // return 16

m A function can be executed by another function

m Functions can be passed as parameters
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F# Functions

Functions as
Parameters

> let comp f z = £ z;;
val comp : f:('a -> 'b) -> z:'a -> 'b

> comp sq 4;;
val it : int = 16

m Functions can be passed as parameters
m Parameter function executed by another function

m Supports abstraction such as repeated function execution
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4 Mapping sq Function

Functions as

> let sq x = x*X;;
> let rec map_sq L =
match L with
I 00 -> 11
| h::t -> sq(h)::map_sq t;;

> map_sq [1;2;3;4];;
val it : int list = [1; 4; 9; 16]

m Repeated mapping of unary sq function to every element of
one list: sq(1)::5q(2)::5q(3)::5q(4)::[]
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Parameter Types

> let rec map (f: int -> int) (L: int list) =

match L with
0 -> 10
| h::t -> (f h)::map f t;;

> map sq [1;2;3;4];;
val it : int list = [1; 4; 9; 16]

m map parameter f:int->int is function with int parameter

and returns an int
m There are no int-specific operations in map, but map is not

generic, only allows int->int
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Generic Parameters

Example

> let sq (x:int) : int = x * x;;

> let rec map (f: 'a -> 'a) (L : 'a list) =
match L with
| 1 -> 11
| h::t -> f h::map f t;;

> map sq [1;2;3;4];;
val it : int list = [1; 4; 9; 16]

m Use 'a when parameter can be any type
m map operations are generic

m But sq uses int-specific operation *

m Pass type parameter, creating generic map
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> let foo (x: string) : string = x + "#";;

> let rec map (f: 'a -> 'a) (L : 'a list) =
match L with
| 0 ->10
| h::t -> f h::map f t;;

> map foo [llall.llbll.llcll] ..
val it : string list = ["a#"; "b#"; "c#"]

m A unary function has a single input parameter

m map of unary foo function to every list element
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4 Mismatched parameter/result types

Functions as

> let ItoS (x: int) : string = x.ToString();;
> let rec map (f: 'a -> 'a) (L : 'a list) =
match L with

I -> 10
| h::t -> f h::map f t;;

> map ItoS [1;2;3];;

error FS0001: Type mismatch. Expecting a int -> int
but given a int -> string
The type 'int' does not match the type 'string'

m map expects f: 'a->'a — parameter/result must be same type
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4 Fixing mismatched types

Functions as

> let ItoS (x: int) : string = x.ToString();;
> let rec map<'T1, 'T2> (f:'T1->'T2) (L:'T1 list) =
match L with
0 ->10
| h::t -> f h::map f t;;

> map ItoS [1;2;3];;
val it : string list = ["1"; "2"; "3"]

m First way of solving mismatched types

m Note the use of <...> after the function name
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4 Fixing mismatched types

Functions as

Example

> let ItoS (x: int) : string = x.ToString();;
> let rec map (f : 'a->'b) (L : 'a list) =
match L with
0 ->10
| h::t -> f h::map f t;;

> map ItoS [1;2;3];;
val it : string list = ["1"; "2"; "3"]

m Second way of solving mismatched types
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Exercise

let £ a = [al;;
let ga=a/ 3.0;;

map f [1; 2; 31;;
map f [1.0; 2.0; 3.0];;

map g [1; 2; 3];;
map g [1.0; 2.0; 3.0];;
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4 Class vs. Type

Functions as

From Design Patterns: Elements of Reusable Object-Oriented

Software
An object’s class defines how the object is implemented.

The class defines the object’s internal state and the im-
plementation of its operations.

In contrast, an object’s type only refers to its inter-
face—the set of requests to which it can respond.

An object can have many types, and objects of different
classes can have the same type.

m Consider a fype Stack with operations: push, pop, isEmpty

m One class for String, another class for Int
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4 Binary Mapping

Functions as

> let add x y = x + y;;

> let rec map2 f L1 L2 =
match (L1,L2) with
[ (01, 1) -> [
| (hil::t1, h2::t2) -> f hl h2::map2 f tl1 t2;;

> map2 add [1;2;3] [4;5;6];;
val it : int list = [5; 7; 9]

m Repeated mapping of binary add function to every element
of two lists with equal number elements
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4 Filtering maps with a guard

Functions as

> let odd x = x%2=1;;

> let rec filter £ L =
match L with
| [0 ->10
| h::t when f h -> h::filter f t
| h::t -> filter f t;;

> filter odd [1;2;3;4;5];;
val it : int list = [1; 3; 5]

m Filter a list elements by repeated mapping of odd predicate
function to every element of one list
School of Computing and Data Science
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' FoldBack

Functions as

Example

> let mult a b = a * b;;
> let rec foldb_mult L a =
match L with
I 0 ->a
| h::t -> mult h (foldb_mult t a);;
> foldb_mult [2;3;4;5] 1;;
val it : int = 120

m Reduction of a list by repeated mapping of binary function
from elements of one list to a single combined value

m Equivalent to:
(mult 2 (mult 3 (mult 4 (mult 5 1))))

School of Computing and Data Science - 1520 - Frank Kreimendahl | kreimendahlf@wit.edu



FoldBack

Example

> let mult a b = a * b;;
> let rec foldback f L a =
match L with
I [ ->a
| h::t -> £ h (foldback £ t a);;

> foldback mult [2;3;4;5] 1;;
val it : int = 120

m In this example, function parameters and a and result all
have same type.
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More Generic FoldBack

> let cons x L = x::L;;
> let rec foldback f L a =
match L with
| 1 ->a
| h::t -> £ h (foldback f t a);;

> foldback cons [1;2;3] [1;;
val it : int list = [1; 2; 3]

m Requires second function parameter and reduction value a
and result to have same type.
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4

Closures

Functions as
Parameters

Function:

Function and its environment — a table storing a reference to each
of the non-local variables of that function.

A closure — unlike a plain function pointer — allows a function to

access those non-local variables even when invoked outside of its
immediate lexical scope.

Closures
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Local functions

let prime n =
let rec remainder m =

match m with
| 0| 1 -> true
| m ->
if n%m=0 then false
else remainder (m-1)
in remainder (n-1);;

Local functions

m Observe that n parameter remains fixed in remainder

m Compute remainder with one parameter
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(' Staged computation

Functions as

> let rec foldback f L a =
let rec red M =
match M with
| 1 ->a
| h::t -> f h (red t)
in
red L;;

> foldback add [4;5;6] 0;;
val it : int = 15

m Improves foldback by eliminating fixed parameters f and a
m red L returns a reference to the function bound with the
enclosing environment of £, L, and a.

m More later when we discuss currying.
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