Functions as
Parameters

Paramete
Mismatch

Explicit Generic

Functions as Parameters

School of Computing and Data Science -1/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as Parameters

Functions as

Example (C# function passing)

delegate int func(int x);
int comp(func f, int z) { return f(z); %}
int sq(int x) { return x*x; }

static void Main(){ comp(sq, 4); } // return 16

m A function can be executed by another function

m Functions can be passed as parameters

School of Computing and Data Science -2/20 - Frank Kreimendahl | kreimendahlf@wit.edu

F# Functions

Functions as
Parameters

> let comp f z = £ z;;
val comp : f:('a -> 'b) -> z:'a -> 'b

> comp sq 4;;
val it : int = 16

m Functions can be passed as parameters
m Parameter function executed by another function

m Supports abstraction such as repeated function execution

School of Computing and Data Science -3/20- Frank Kreimendahl | kreimendahlf@wit.edu

4 Mapping sq Function

Functions as

> let sq x = x*X;;
> let rec map_sq L =
match L with
I 00 -> 11
| h::t -> sq(h)::map_sq t;;

> map_sq [1;2;3;4];;
val it : int list = [1; 4; 9; 16]

m Repeated mapping of unary sq function to every element of
one list: sq(1)::5q(2)::5q(3)::5q(4)::[]

School of Computing and Data Science -4/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Parameter Types

> let rec map (f: int -> int) (L: int list) =

match L with
0 -> 10
| h::t -> (f h)::map f t;;

> map sq [1;2;3;4];;
val it : int list = [1; 4; 9; 16]

m map parameter f:int->int is function with int parameter

and returns an int
m There are no int-specific operations in map, but map is not

generic, only allows int->int

-5/20 - Frank Kreimendahl | kreimendahlf@wit.edu

School of Computing and Data Science

Generic Parameters

Example

> let sq (x:int) : int = x * x;;

> let rec map (f: 'a -> 'a) (L : 'a list) =
match L with
| 1 -> 11
| h::t -> f h::map f t;;

> map sq [1;2;3;4];;
val it : int list = [1; 4; 9; 16]

m Use 'a when parameter can be any type
m map operations are generic

m But sq uses int-specific operation *

m Pass type parameter, creating generic map

School of Computing and Data Science -6/20 - Frank Kreimendahl | kreimendahlf@wit.edu

> let foo (x: string) : string = x + "#";;

> let rec map (f: 'a -> 'a) (L : 'a list) =
match L with
| 0 ->10
| h::t -> f h::map f t;;

> map foo [llall.llbll.llcll] ..
val it : string list = ["a#"; "b#"; "c#"]

m A unary function has a single input parameter

m map of unary foo function to every list element

School of Computing and Data Science -7/20 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Mismatched parameter/result types

Functions as

> let ItoS (x: int) : string = x.ToString();;
> let rec map (f: 'a -> 'a) (L : 'a list) =
match L with

I -> 10
| h::t -> f h::map f t;;

> map ItoS [1;2;3];;

error FS0001: Type mismatch. Expecting a int -> int
but given a int -> string
The type 'int' does not match the type 'string'

m map expects f: 'a->'a — parameter/result must be same type

School of Computing and Data Science -8/20 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Fixing mismatched types

Functions as

> let ItoS (x: int) : string = x.ToString();;
> let rec map<'T1, 'T2> (f:'T1->'T2) (L:'T1 list) =
match L with
0 ->10
| h::t -> f h::map f t;;

> map ItoS [1;2;3];;
val it : string list = ["1"; "2"; "3"]

m First way of solving mismatched types

m Note the use of <...> after the function name

School of Computing and Data Science -9/20 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Fixing mismatched types

Functions as

Example

> let ItoS (x: int) : string = x.ToString();;
> let rec map (f : 'a->'b) (L : 'a list) =
match L with
0 ->10
| h::t -> f h::map f t;;

> map ItoS [1;2;3];;
val it : string list = ["1"; "2"; "3"]

m Second way of solving mismatched types

School of Computing and Data Science -10/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Exercise

let £ a = [al;;
let ga=a/ 3.0;;

map f [1; 2; 31;;
map f [1.0; 2.0; 3.0];;

map g [1; 2; 3];;
map g [1.0; 2.0; 3.0];;

School of Computing and Data Science -11/20 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Class vs. Type

Functions as

From Design Patterns: Elements of Reusable Object-Oriented

Software
An object’s class defines how the object is implemented.

The class defines the object’s internal state and the im-
plementation of its operations.

In contrast, an object’s type only refers to its inter-
face—the set of requests to which it can respond.

An object can have many types, and objects of different
classes can have the same type.

m Consider a fype Stack with operations: push, pop, isEmpty

m One class for String, another class for Int

School of Computing and Data Science -12/20 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Binary Mapping

Functions as

> let add x y = x + y;;

> let rec map2 f L1 L2 =
match (L1,L2) with
[(01, 1) -> [
| (hil::t1, h2::t2) -> f hl h2::map2 f tl1 t2;;

> map2 add [1;2;3] [4;5;6];;
val it : int list = [5; 7; 9]

m Repeated mapping of binary add function to every element
of two lists with equal number elements

School of Computing and Data Science -13/20 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Filtering maps with a guard

Functions as

> let odd x = x%2=1;;

> let rec filter £ L =
match L with
| [0 ->10
| h::t when f h -> h::filter f t
| h::t -> filter f t;;

> filter odd [1;2;3;4;5];;
val it : int list = [1; 3; 5]

m Filter a list elements by repeated mapping of odd predicate
function to every element of one list
School of Computing and Data Science

- 14/20 - Frank Kreimendahl | kreimendahlf@wit.edu

' FoldBack

Functions as

Example

> let mult a b = a * b;;
> let rec foldb_mult L a =
match L with
I 0 ->a
| h::t -> mult h (foldb_mult t a);;
> foldb_mult [2;3;4;5] 1;;
val it : int = 120

m Reduction of a list by repeated mapping of binary function
from elements of one list to a single combined value

m Equivalent to:
(mult 2 (mult 3 (mult 4 (mult 5 1))))

School of Computing and Data Science - 1520 - Frank Kreimendahl | kreimendahlf@wit.edu

FoldBack

Example

> let mult a b = a * b;;
> let rec foldback f L a =
match L with
I [->a
| h::t -> £ h (foldback £ t a);;

> foldback mult [2;3;4;5] 1;;
val it : int = 120

m In this example, function parameters and a and result all
have same type.

School of Computing and Data Science - 16/20 - Frank Kreimendahl | kreimendahlf@wit.edu

More Generic FoldBack

> let cons x L = x::L;;
> let rec foldback f L a =
match L with
| 1 ->a
| h::t -> £ h (foldback f t a);;

> foldback cons [1;2;3] [1;;
val it : int list = [1; 2; 3]

m Requires second function parameter and reduction value a
and result to have same type.

School of Computing and Data Science -17/120 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Closures

Functions as
Parameters

Function:

Function and its environment — a table storing a reference to each
of the non-local variables of that function.

A closure — unlike a plain function pointer — allows a function to

access those non-local variables even when invoked outside of its
immediate lexical scope.

Closures

School of Computing and Data Science - 18/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Local functions

let prime n =
let rec remainder m =

match m with
| 0| 1 -> true
| m ->
if n%m=0 then false
else remainder (m-1)
in remainder (n-1);;

Local functions

m Observe that n parameter remains fixed in remainder

m Compute remainder with one parameter

School of Computing and Data Science -19/20 - Frank Kreimendahl | kreimendahlf@wit.edu

(' Staged computation

Functions as

> let rec foldback f L a =
let rec red M =
match M with
| 1 ->a
| h::t -> f h (red t)
in
red L;;

> foldback add [4;5;6] 0;;
val it : int = 15

m Improves foldback by eliminating fixed parameters f and a
m red L returns a reference to the function bound with the
enclosing environment of £, L, and a.

m More later when we discuss currying.
School of Computing and Data Science -20/20 - Frank Kreimendahl | kreimendahlf@wit.edu

	Functions as Parameters
	Functions as Parameters
	Map sq Function
	Parameter Types
	Generic Parameters
	Mismatched types
	Explicit Generics
	Generics
	Exercise
	Class vs. Type
	Binary Mapping
	Filtering
	FoldBack
	Generic FoldBack
	More Generic FoldBack
	Closures
	Local functions
	Staged computation

