
Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Functions as Parameters

School of Computing and Data Science - 1/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Functions as Parameters

Example (C# function passing)
delegate int func(int x);
int comp(func f, int z) { return f(z); }
int sq(int x) { return x*x; }

static void Main(){ comp(sq, 4); } // return 16

A function can be executed by another function

Functions can be passed as parameters

School of Computing and Data Science - 2/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

F# Functions

Example
> let comp f z = f z;;
val comp : f:('a -> 'b) -> z:'a -> 'b

> comp sq 4;;
val it : int = 16

Functions can be passed as parameters

Parameter function executed by another function

Supports abstraction such as repeated function execution

School of Computing and Data Science - 3/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Mapping sq Function

Example
> let sq x = x*x;;
> let rec map_sq L =

match L with
| [] -> []
| h::t -> sq(h)::map_sq t;;

> map_sq [1;2;3;4];;
val it : int list = [1; 4; 9; 16]

Repeated mapping of unary sq function to every element of
one list: sq(1)::sq(2)::sq(3)::sq(4)::[]

School of Computing and Data Science - 4/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Parameter Types

Example
> let rec map (f: int -> int) (L: int list) =

match L with
| [] -> []
| h::t -> (f h)::map f t;;

> map sq [1;2;3;4];;
val it : int list = [1; 4; 9; 16]

map parameter f:int->int is function with int parameter
and returns an int

There are no int-specific operations in map, but map is not
generic, only allows int->int

School of Computing and Data Science - 5/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Generic Parameters

Example
> let sq (x:int) : int = x * x;;

> let rec map (f: 'a -> 'a) (L : 'a list) =
match L with

| [] -> []
| h::t -> f h::map f t;;

> map sq [1;2;3;4];;
val it : int list = [1; 4; 9; 16]

Use 'a when parameter can be any type
map operations are generic
But sq uses int-specific operation *
Pass type parameter, creating generic map

School of Computing and Data Science - 6/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Mapping foo

Example
> let foo (x: string) : string = x + "#";;

> let rec map (f: 'a -> 'a) (L : 'a list) =
match L with

| [] -> []
| h::t -> f h::map f t;;

> map foo ["a";"b";"c"];;
val it : string list = ["a#"; "b#"; "c#"]

A unary function has a single input parameter

map of unary foo function to every list element

School of Computing and Data Science - 7/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Mismatched parameter/result types

Example
> let ItoS (x: int) : string = x.ToString();;
> let rec map (f: 'a -> 'a) (L : 'a list) =

match L with
| [] -> []
| h::t -> f h::map f t;;

> map ItoS [1;2;3];;
error FS0001: Type mismatch. Expecting a int -> int

but given a int -> string
The type 'int' does not match the type 'string'

map expects f:'a->'a – parameter/result must be same type

School of Computing and Data Science - 8/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Fixing mismatched types

Example
> let ItoS (x: int) : string = x.ToString();;
> let rec map<'T1, 'T2> (f:'T1->'T2) (L:'T1 list) =

match L with
| [] -> []
| h::t -> f h::map f t;;

> map ItoS [1;2;3];;
val it : string list = ["1"; "2"; "3"]

First way of solving mismatched types

Note the use of <. . . > after the function name

School of Computing and Data Science - 9/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Fixing mismatched types

Example
> let ItoS (x: int) : string = x.ToString();;
> let rec map (f : 'a->'b) (L : 'a list) =

match L with
| [] -> []
| h::t -> f h::map f t;;

> map ItoS [1;2;3];;
val it : string list = ["1"; "2"; "3"]

Second way of solving mismatched types

School of Computing and Data Science - 10/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Exercise

Given
let f a = [a];;
let g a = a / 3.0;;

Results?
map f [1; 2; 3];;
map f [1.0; 2.0; 3.0];;

map g [1; 2; 3];;
map g [1.0; 2.0; 3.0];;

School of Computing and Data Science - 11/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Class vs. Type

From Design Patterns: Elements of Reusable Object-Oriented
Software

An object’s class defines how the object is implemented.
The class defines the object’s internal state and the im-
plementation of its operations.
In contrast, an object’s type only refers to its inter-
face—the set of requests to which it can respond.
An object can have many types, and objects of different
classes can have the same type.

Consider a type Stack with operations: push, pop, isEmpty

One class for String, another class for Int

School of Computing and Data Science - 12/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Binary Mapping

Example
> let add x y = x + y;;

> let rec map2 f L1 L2 =
match (L1,L2) with

| ([], []) -> []
| (h1::t1, h2::t2) -> f h1 h2::map2 f t1 t2;;

> map2 add [1;2;3] [4;5;6];;
val it : int list = [5; 7; 9]

Repeated mapping of binary add function to every element
of two lists with equal number elements

School of Computing and Data Science - 13/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Filtering maps with a guard

Example
> let odd x = x%2=1;;

> let rec filter f L =
match L with

| [] -> []
| h::t when f h -> h::filter f t
| h::t -> filter f t;;

> filter odd [1;2;3;4;5];;
val it : int list = [1; 3; 5]

Filter a list elements by repeated mapping of odd predicate
function to every element of one list

School of Computing and Data Science - 14/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

FoldBack

Example
> let mult a b = a * b;;
> let rec foldb_mult L a =

match L with
| [] -> a
| h::t -> mult h (foldb_mult t a);;

> foldb_mult [2;3;4;5] 1;;
val it : int = 120

Reduction of a list by repeated mapping of binary function
from elements of one list to a single combined value

Equivalent to:
(mult 2 (mult 3 (mult 4 (mult 5 1))))

School of Computing and Data Science - 15/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

FoldBack

Example
> let mult a b = a * b;;
> let rec foldback f L a =

match L with
| [] -> a
| h::t -> f h (foldback f t a);;

> foldback mult [2;3;4;5] 1;;
val it : int = 120

In this example, function parameters and a and result all
have same type.

School of Computing and Data Science - 16/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

More Generic FoldBack

Example
> let cons x L = x::L;;
> let rec foldback f L a =

match L with
| [] -> a
| h::t -> f h (foldback f t a);;

> foldback cons [1;2;3] [];;
val it : int list = [1; 2; 3]

Requires second function parameter and reduction value a
and result to have same type.

School of Computing and Data Science - 17/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Closures

Function and its environment – a table storing a reference to each
of the non-local variables of that function.
A closure – unlike a plain function pointer – allows a function to
access those non-local variables even when invoked outside of its
immediate lexical scope.

School of Computing and Data Science - 18/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Local functions

Example
let prime n =

let rec remainder m =
match m with
| 0 | 1 -> true
| m ->

if n%m=0 then false
else remainder (m-1)

in remainder (n-1);;

Observe that n parameter remains fixed in remainder

Compute remainder with one parameter

School of Computing and Data Science - 19/20 - Frank Kreimendahl | kreimendahlf@wit.edu

Functions as
Parameters
Functions as
Parameters

Map sq Function

Parameter Types

Generic Parameters

Mismatched types

Explicit Generics

Generics

Exercise

Class vs. Type

Binary Mapping

Filtering

FoldBack

Generic FoldBack

More Generic
FoldBack

Closures

Local functions

Staged computation

Staged computation

Example
> let rec foldback f L a =

let rec red M =
match M with

| [] -> a
| h::t -> f h (red t)

in
red L;;

> foldback add [4;5;6] 0;;
val it : int = 15

Improves foldback by eliminating fixed parameters f and a
red L returns a reference to the function bound with the
enclosing environment of f, L, and a.
More later when we discuss currying.

School of Computing and Data Science - 20/20 - Frank Kreimendahl | kreimendahlf@wit.edu

	Functions as Parameters
	Functions as Parameters
	Map sq Function
	Parameter Types
	Generic Parameters
	Mismatched types
	Explicit Generics
	Generics
	Exercise
	Class vs. Type
	Binary Mapping
	Filtering
	FoldBack
	Generic FoldBack
	More Generic FoldBack
	Closures
	Local functions
	Staged computation

