W
&“T 0 Q%&Pﬁogramming Languages

@ Professor Frank Kreimendahl

7

hool of Computing and Data Science

@
~
O
>

Wentworth Institute of Technology

May 15, 2023

A First Look
at F#

Motivation
Functional Language
F

Running F# in IDEF

A First Look at F#

F# Types

School of Computing and Data Science -2/62 - Frank Kreimendahl | kreimendahlf@wit.edu

A First Look
at F#

Very high level above machine architecture — powerful
Functional language — everything returns a result
Interactive — code and test immediately

Minimal side effects — easier to reason about program
behavior

Object-oriented

F# Types

Pattern matching programming style

Useful for studying fundamentals of languages
B F# runs on the .NET CLR.

C# and F# classes can be freely mixed.

School of Computing and Data Science -3/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Functional Languages

A First Look
at F#

fotivation

Functional Languages

F

Example (a factorial function in F#)

Running F# in IDEF

let rec factorial x =
if x <= 0 then 1 else x * factorial (x-1);;

F# Types
m Hallmarks of functional languages:
® Single-valued variables
® Heavy use of recursion
® Functions are first-class citizens, can be used as parameters,
function results, etc.
® Minimal use of assignments and side-effects

School of Computing and Data Science -4/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

A First Look
at F#

Open standard adopted/supported by Microsoft

The F# Created as an implementation of OCaml
langauge

— Full support for functional programming
Useful in Artificial Intelligence and programming languages
Compatible with .NET

|
|
|
m Very strong static type system
|
|
m Object oriented

School of Computing and Data Science -5/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

In lab this week: Download IDE installers from course
website
Enter F# instructions into the Read Eval Print Loop (REPL)

® dotnet fsi on Linux/OS X
® fsi on Windows

A First Look

F# has two running modes with slightly different syntax

® interactive mode: ; ; at the end of expressions
® source code: no ; ; at the end of expressions

F# Types

Lecture examples will always use interactive formatting

Lecture examples also include >’ prompt character, which
should not be typed as part of an expression

School of Computing and Data Science -6/62 - Frank Kreimendahl | kreimendahlf@wit.edu

' 1+2x3

A First Look
at F#

tion

Running F# in IDEF

> 1+2%3;;

val it : int = 7
F# Types

m Type an expression after > prompt; F# replies with value and
type

m Variable it is a variable with the returned result.

m Notice F# inferred the type as int.

School of Computing and Data Science -7/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

A First Look
at F#

The F#
langauge

iples and List

The F# langauge

F# Types

School of Computing and Data Science - 8/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Number constants

A First Look
at F#

> 1234;;
val it : int = 1234

> 123.4;;
val it : float = 123.4

F# Types
m Integer constants: standard decimal
m Float constants: standard decimal notation

m Note the type names: int, float

School of Computing and Data Science -9/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

bool constants

A First Look
at F#
The F#

langauge

> true;;
val it : bool = true
> false;;
val it : bool = false

F# Types
m bool constants true and false
m F# is case-sensitive: use true, not True or TRUE

m Note type name: bool

School of Computing and Data Science - 10/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 char and string constants

A First Look

at F#

F# Types

> "fred";;

val it : string = "fred"
> IIHII;;

val it : string = "H"

> "H';;

val it : char = 'H'

m String constants: text inside double quotes
m Can use C-style escapes: \n, \t, \\, \"", etc.
m Character constants: 1 character inside single quotes

m Note type names: string and char

School of Computing and Data Science -11/62 - Frank Kreimendahl | kreimendahlf@wit.edu

' Arithmetic

A First Look
at F#

The F#

langauge
; >-1+2-3x4/576;;
: val it : int = -1

>-1.0+2.0-3.0*x4.0/5.0;;
val it : float = -1.4

m Standard operators for integers, using — for unary negation
and for binary subtraction

F# Types

m Same operators for floats
m Left associative, precedence is {+,—} < {x,/,%} < {—}.

School of Computing and Data Science -12/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Concatenation and Relations

A]r;;q Look
atF
The F# > "bibity" + "bobity" + "boo";;
neange val it : string = "bibitybobityboo"
> 2 < 3;;
val it : bool = true
> 1.0 <= 1.0;;
val it : bool = true

> Idl > ICI . ;

val it : bool = true
‘ > Ilabcell >= Ilabdll;;

F# Types val it : bool = false

m String concatenation: + operator

m Ordering comparisons: <,>, <=, >=, apply to all types so
far: these are comparable types

School of Computing and Data Science - 13/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

More Relations

A First Look

at F# Example

langavge > 1=2;;

: val it : bool = false
>1=2;;
val it : bool = false

> true <> false;;

val it : bool = true
>1.3 =1.3;;
val it : bool true

> [1; 4; 6] = [1; 4; 6]1;;
val it : bool = true

F# Types

m Equality comparisons: = and <>

m Most types are equality testable: these are equality types

School of Computing and Data Science - 14/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 bool operators

A First Look
at F#
The F#

langauge

c

>1<1+1 || 3>4;;

val it : bool = true
> 1< 2 &% not (3 < 4);;
val it : bool = false

m bool operators: &&, ||, not. (And we can also use = for
equivalence and <> for exclusive or.)

F# Types m Precedence so far: {||} < {&&} < {=,<>,<, >, <=,>=
} < {+’7} < {*7/5%} < {*,not}

School of Computing and Data Science - 15/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Short-circuiting bool operations

A First Look
at F#

> true || 1/ 0 = 0;;

val it : bool = true

Note: && and || are short-circuiting operators: if the first operand
of || is true, the second is not evaluated; likewise if the first
operand of && is false.

F# Types

School of Computing and Data Science - 16/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Conditionals

A First Look
at F#

i > if (1 < 2) then "1 < 2" else "2 < 1";;
’ val it : string = "1 < 2"

> if (1 > 2) then 34 else 56;;

val it : int = 56

>1 + (if (1 < 2) then 34 else 56);;
val it : int = 35

v

: m Value of the expression is the value of the true part if the test
F# Types part is true or the value of the else part otherwise

m if... construct throws an error, result type cannot be
determined

School of Computing and Data Science -17/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Conditional errors

A First Look
at F#
The F#

langauge

Example

> if (true) then 1.0 else 'a';;

error FS0001: All branches of an 'if' expression
must return values implicitly convertible to
the type of the first branch, which here is
'float'. This branch returns a value of
type 'char'.

F# Types > if (false) then "OK" else 1.0;;
error FS0001: <clipped error>

School of Computing and Data Science - 18/62 - Frank Kreimendahl | kreimendahlf@wit.edu

' ' Exercises

A First Look
at F#

What is the value and F# type for each expression?
"abc" + "def" + "gh';;
if (1 < 2) then 3.0 else 4.0;;
5 % (if (1 < 2) then 3 else 4);;
B1<2|] (1/0)==0;;
if (3 < 4) then 5;;
if (8 > 4) then 5 else 0;;
if (3 > 4) then 2 else '2';;

F# Types

School of Computing and Data Science - 19/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Implicit type conversion

A First Look
at F#

The F# > 1 % 2;;

i) val it : int = 2

> 1.0 x 2;;

error FS0001: The type 'int' does not match the
type 'float'

> 1.0 < 2;;

val it: bool = true

Example

m The *, 4+ and other arithmetic operators are overloaded to
have one meaning on pairs of ints, and another on pairs of
floats.

m F# does not perform implicit type conversion with one
important exception:

® int32 — double

School of Computing and Data Science -20/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Explicit type conversion

A First Look
at F#

Example

> float 123;;

val it : float = 123.0
> (float 123) * 2.0;;

val it: float = 246.0
> floor 3.6;;

val it : float = 3.0

> (floor 3.6) < 4.0;;

val it : bool = true

> float "123";;

val it : float = 123.0

F# Types

School of Computing and Data Science -21/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Exercises

A First Look
at F#
The F#

langauge

What is the result for each expression?

floor 5;;

ceil 5.5;;

5+4.0;;

if (0) then 1 else 2;;

if (true) then 1 else 2.0;;
string 97.34;;

F# Types 97.34 + "2";;

B 97.34 + '2';;

School of Computing and Data Science -22/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Variable definition

A First Look
at F#

Example

The F#

langauge

> let x = 1+2x%3;;

val x : int = 7

e

val it : int = 7

> let y = if (x = 7) then 1.0 else 2.0;;
val y : float = 1.0

m Define a new variable and bind to a value using let.

m Variable names should consist of a letter, followed by zero or
more letters, digits, and/or underscores (or most things
surrounded with * 7).

School of Computing and Data Science -23/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Multiple variable definitions

A First Look
at F#

The F# > let x = 23;;

neange val x : int = 23

> let x = true;;

val x : bool = true

> x = 23;;

error FS0001: This expression was expected to
have type 'bool' but here has type 'int'

Example

m Can define a new variable with the same name as an old one,
even using a different type. (This is not particularly useful.)

m This is not the same as assignment. It defines a new variable
but does not change the old one. Any part of the program
that was using the first definition of x, still uses the first
definition after the second definition is made.

School of Computing and Data Science -24/62 - Frank Kreimendahl | kreimendahlf@wit.edu

(' Variable definition

A First Look
at F#

The F# > let fred = 23;;

' val fred : int = 23

> fred <- fred + 1;;

error FS0027: This value is not mutable...
> let mutable fred = 23;;

val mutable fred : int = 23

> fred <- fred + 1;;

val it : unit = ()

> fred;;

val it : int = 24

m Assignment: Variables can change value using side effects.

m In functional programming, side effects, (e.g. assignments)
are avoided.

School of Computing and Data Science -25/62 - Frank Kreimendahl | kreimendahlf@wit.edu

' ' Exercises

A First Look
at F#

Suppose we make these F# declarations
S m let a = "123";;

The F#

m let b = "456";;
mlet c=a+ b+ "789";;
mlet a =3+ 4;;

mb;;

School of Computing and Data Science -26/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Garbage Collection

A First Look
at F#

m F# runs under Common Language Runtime — the VM for
.NET programs

m Garbage collection responsibility of CLR
m Reclaiming pieces of memory that are no longer being used

m We’ll see much more about this when we look at C#.

School of Computing and Data Science -27/62 - Frank Kreimendahl | kreimendahlf@wit.edu

A First Look
at F#
The F#

langauge

> let barney = (1+2, 3.0%4.0, "hi");;

val barney : int * float * string = (3, 12.0, "hi")
> let ptl = ("red", (30, 20));;

val ptl : string * (int * int) = ("red", (30, 20))
> fst ptl;;

val it : string = "red"

> fst (snd ptl);;

val it : int = 30

F# Types

School of Computing and Data Science -28/62 - Frank Kreimendahl | kreimendahlf@wit.edu

A First Look
at F#

The F#

langauge

Tuple Typ:
Exerci
Li

Empty List
List Type
ISEmpt

Head and Tail
Exercise

F# Types

4 Tuples

m Heterogeneous: tuples can contain mixed types

m Parentheses define tuples

m A tuple is similar to a struct in C++ but with no field names

m fst x is the first element of 2-tuple x, snd x is the second.

> snd ("red", 50);;
val it : int = 50

School of Computing and Data Science

-29/62 -

Frank Kreimendahl | kreimendahlf@wit.edu

4 No Tuple of 1

A First Look
at F#
The F#

langauge

> (5, 6);;
val it : int * int = (5, 6)
> (5);;

e val it : int = 5
Lin > fst (5, 6);;
Lt val it : int = 5

ISEmpty

> fst (5);;

et error FS0001: This expression was expected
to have type ''a * 'b' but here has type
F# Types "int'

School of Computing and Data Science -30/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Tuple Type Constructor

A First Look
at F#

The F#
langauge

m The type of a tuple gives (,) as a type constructor
m For tuple (5,true);;, int * bool is the type of pairs (X,
y) where x is an int and y is a bool

m Parentheses have structural significance, each below are
different:

® (int, (int, bool)): (5,(6, true))

® ((int, int), string): ((5,6), "Hi")
® (int, int, bool): (5, 6, true)
[)

((bool, int), (int, float)): ((true,4),(5,3.1))

F# Types

School of Computing and Data Science -31/62 - Frank Kreimendahl | kreimendahlf@wit.edu

' ' Exercises

A First Look
at F#

The F#

What is the result for each expression?

snd (3, 4);;

let x = (1+2, 3.0%0.5, "zig" + "zag");;
X553

(4, 56) = (4, 5);;

snd (3, 4, 5);;

(4, "zig") = (4, 5);;

(4, 5.0) = (4, 5);;

: B (3, "zig", 5.3);;

e (3, (4, "zig"), 5.3);;

School of Computing and Data Science -32/62 - Frank Kreimendahl | kreimendahlf@wit.edu

' Lists

A First Look
at F#

Example

The F#
P > [1; 2; 3];;

val it : int list = [1; 2; 3]

> [1.0; 2.0];;

val it : float list = [1.0; 2.0]

> [1.0; "Hello"l;;

error FS0001: <error>

> [[1; 2; 3]; [1; 211;;

val it : int list list = [[1; 2; 3]; [1; 2]1]

m Homogeneous: all list elements must be the same type.

F# Types

m Mixing types results in an exception

School of Computing and Data Science -33/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Empty Lists

A First Look
at F#
The F#

langauge

e > ;5
. val it : 'a list = []
> let empty = [I;;

Tupl Ty val empty : 'a list

L > empty = [1;;
val it : bool = true

m Empty listis []
m List.empty is an alias for []

B 'a list means a list of elements, type 'a

School of Computing and Data Science -34/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 List Type Constructor

A First Look
at F#

m The type list is type constructor

m For example, in [5;6] the type int list means each element is
of type int

m A list is not a tuple: [5;6;7] is not (5,6,7)

F# Types

School of Computing and Data Science -35/62 - Frank Kreimendahl | kreimendahlf@wit.edu

A First Look
at F#

The F#

> []1.IsEmpty;;
val it : bool = true

> [1;2;3].IsEmpty;;
val it : bool = false

m IsEmpty tests for the empty list

m Can also use an equality test, asinx = []

F# Types

School of Computing and Data Science -36/62 - Frank Kreimendahl | kreimendahlf@wit.edu

A First Look
at F#

The F#

> [1;2;3] @ [4;5;6];;
val it : int list = [1; 2; 3; 4; 5; 6]

m Q@ operator concatenates two lists
m Both operands must be lists
m Both lists must have the same type

F# Types

-37/62 - Frank Kreimendahl | kreimendahlf@wit.edu

School of Computing and Data Science

4

:: Operator

A First Look
Sl > let n = 5::[6;7];;
val n : int list = [5; 6; 7]
> let x = 5::[1;;
val x : int list = [5]
> let y = 6::x;;

val y : int list = [6; 5]
>let y = 5::6::7::[1;;
val y : int list = [5; 6; 7]

m :: operator is a list-builder (pronounced cons) for constructor
LSS m Constructs a new list by prepending an element to a list

m :: operator is right-associative

School of Computing and Data Science -38/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Head and Tail functions

A First Look
at F#

g >let z =1::2::[1;;

val z : int list = [1; 2]
> z.Head; ;

val it : int = 1
> z.Tail;;

val it : int list
> z.Tail.Tail;;
val it : int list

[2]

(]

m The Head function returns the head of a list: the first element

Fi Types m The Tail function returns the list tail: the /ist without the

Head element

School of Computing and Data Science -39/62 - Frank Kreimendahl | kreimendahlf@wit.edu

A First Look
at F#

The F#

Exercises

[1;2] @ [3;4];;

32252 gs
e e@e g 007 3¢
(1::2::[]) .Head;;

[[1;2];[3;4]1];;
[[1;2];[3;4]].Tail;;

[5] .tail;;

(snd ([1;2], [3;4])).Tail.Head;
[(3,4),(5,6)].Head;;

[1;3;4] .Head::2::[1;3;4] .Tail;;

-

B B &

What is the result for each expression?

b

School of Computing and Data Science -40/62 -

Frank Kreimendahl | kreimendahlf@wit.edu

4

Exercises

A First Look
at F#

The F#

langauge
hat is the result for each expression?

[].Head;;
[1.tail;;

Tuple Typ

— [1;2].Tail.Tail.Head;;
S 1 e [2];;
[11::[2;3];;

B 1::2::[].Head;;

ISEmpty

School of Computing and Data Science -41/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Exercises

A First Look
at F#

Implement each expression in F#
Concatenate [1;2] with [3;4].
1 cons’ed to [2;3].
Second element of [1;2;3;4].
Last element of [1;2;3;4].
2 cons’ed to [1;3] to yield [1;2;3].

School of Computing and Data Science -42/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Defining Functions

A First Look
at F#

> let add x y = X + ¥;;
val add : x:int -> y:int -> int

m add - the function name
B Xy — parameter list
m X + Yy — function result

m add : x:int -> y:int -> int — inferred function result type

!
Fu
F

E
Func
E

F

P

E

Example (C/C++/Java equivalent)

F# Types
int add(int x, int y)
{ return x + y; }

School of Computing and Data Science -43/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 let keyword

A First Look
at F#

The F#

> let first (x: (int * string)):int = fst x;;
val first : int * string -> int

> first (2, "abc");;

val it : int = 2

m let defines a new function and binds to variable first

m first is an int * string -> int function whose argument x type
isint * string and the return type is int

Fi# Types m It is not necessary to declare any return types, since F# infers
them.

School of Computing and Data Science -44/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Function Definition Syntax

A First Look
at F#

The F#

<fun-def> ::=
let <function-name> (<parameter>:type):type =
<expression> ;;

m <function-name> can be any legal F# name

m The simplest <parameter> is just a single variable name:
the formal parameter of the function

m The <expression> is any F# expression; its value is the
T value the function returns

m This is not the full F# function declaration. .. more later

School of Computing and Data Science -45/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Function Type Constructor

A First Look
at F#

The F#

langauge m F# gives the type of functions using -> as a type constructor

m For example, int -> float is the type of a function that takes
an int parameter (the domain type) and produces a float
result (the range type)

m From math: a function maps domain values (inputs) to range
values (outputs).

m let £ (x:int):float = float (x % 4);; maps the
domain of all integers to the float range of [0.0..3.0].
The type is: £:int -> float

F# Types

School of Computing and Data Science -46/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Parameter Passing

A First Look
at F#
The F#

langauge

> let quot (a:float) (b:float) = a / b;;
val quot : a:float -> b:float -> float
> quot 6.0 2.0;;

val it : float = 3.0

> quot 6 2;;

val it: float = 3.0

m Remember: Type promotion from int to float only

F:

m Java/C#/etc. promotes char -> int -> float

School of Computing and Data Science -47/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Func Signatures

A First Look
at F#
The F#

langauge

Constan

> let cons a L = a::L;;
val cons : a:'a -> L:'a list -> 'a list

Tuples and List

Func Definition:

Defining Functions

m Function name: cons

m Parameter tuple: 'a, list of 'a

m Element one, type unknown: 'a

m Element two, list of type unknown: 1list of 'a

T m Result list type unknown: 1ist of 'a

School of Computing and Data Science -48/62 - Frank Kreimendahl | kreimendahlf@wit.edu

" Exercises
What is the result for each function call?

m let fa (x:int) = x + 1;;

A First Look
at F#

m fa 3;;

m let fb (x:'a) (y:'b) = x;;

m fb [1;2;3] 4;;

m fb 3 4;;

m let fc (x:'a list) = x.Tail;;

m fc [1; 2; 3];;

m let fd (x:'a list) (y:'a list) =
x.Head::y.Tail;;

m fd [1;2;3] [4;5;6];;

m let fe (x:int list) = x.Head + 1;;

m fe [3;2;1];;

School of Computing and Data Science -49/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Exercises

A First Look

at F#

The F#
auge

What is the return type for each function?

m let fa (x:int) = x + 1;;
m let fb (x:'a) (y:'b) = x;;
m let fc (x:'a list)

m let fd (x:'a list, y:'a list) = x.Head
y.Tail;;

x.Tail;;

m let fe (x:int) = x.Head + 1;;

F# Types

School of Computing and Data Science -50/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Recursion
A First Look
at F#
The F# . ; i
langange m Functional languages are characterized by use of recursion

Constan

for repetition

Tl md Li m Functional languages such as F# minimize assignment
Func Definition:

et Fomeons hazard of side effects

m Repetition (e.g. for, while, do while, etc.) requires
assignment

Example (C++ loop)

for (i=0; i<10; i=i+1)

F# Types cout << 1 ;

School of Computing and Data Science -51/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Recursive factorial function

A First Look
at F#

Example

The F#

> let rec fact n =
if (n = 0) then 1 else n * fact (n-1);;
// call a f'n with space-separated parameters
val fact : n:int -> int
> fact 5;;
val it : int = 120

Many recursive functions consist of a pattern of two steps:
- m Test for base case, terminating condition:
F# Types ® if (n = 0) then 1
m Recurse, moving closer to terminating condition:
® else n * fact (n-1)

School of Computing and Data Science -52/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Exercises

A First Look
at F#
The F#

langauge

rite the recursive functions in F#
int Fib(int n) {
if (n <=1) return n;
else return Fib(n-1) + Fib(n-2);

Defining Functions }
let k

double interest(rate, principle, year) {
if (year == 0)

— return principle;

B else return

LT interest(rate, (1.0+rate) * principle, year-1);

School of Computing and Data Science -53/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Recursive int list summation

A First Look
at F#

Example

The F# . . .
. > let rec summation (x:int list) =

if (x.IsEmpty) then O
else x.Head + summation (x.Tail);;
val summation : x:int list -> int

> summation [1;2;3;4;5];;
val it : int = 15

Common recursive function pattern for list arguments:
m base case test for empty list:
® if (x.isEmpty) then O

F# Types

m recursive call moving closer to base case of x. isEmpty:
® summation(x.Tail)

School of Computing and Data Science - 54/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Recursive list length

A First Look
at F#

> let rec length (x:'a list) =
if (x.IsEmpty) then O
else 1 + length x.Tail;;
val length : x:'a list -> int
> length [true;false;truel;;
val it : int = 3
> length [1;2;3];;
val it : int = 3

m Function to compute the list length is predefined in F#.

F# Types
m Note type length : x:'a list -> int works on any type of
list.

m Polymorphic, while summation operates on int lists only.

School of Computing and Data Science - 55/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Recursive last element in list

A First Look
at F#

The F#
langauge

> let rec last (L:'a list) =
if (L.Tail = []) then L.Head
else last L.Tail;;

val last : L:'a list -> 'a

> last [2;4;6;8;10];;

val it : int = 10

Notice recursion pattern of:

m Test base case L.Tail=[], return base case value L.Head
One element remaining in L
Recurse last (L.Tail), moving closer to base case

F# Types

School of Computing and Data Science - 56/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Recursive 7" element in list

A First Look
ge > let rec Nth n (L:'a list) =

if (n = 1) then L.Head

else Nth (n-1) L.Tail;;
val Nth : n:int -> L:'a list -> 'a
> Nth 2 [true;false;truel;;
val it : bool = false
> Nth 2 [("a", 4); ("b", -2)1;;
val it : string * int = ("b", -2)

m Typen:int -> L:'a list -> 'a works on any type of
list, polymorphic on the list parameter.

m Fails when list has less than n elements.

School of Computing and Data Science -57/62 - Frank Kreimendahl | kreimendahlf@wit.edu

A First Look
at F#

The F#

langauge

4 Recursive list identity

> let rec identity (L:'a list) =

if (L.IsEmpty) then []

else L.Head::identity(L.Tail);;
val identity : L:'a list -> 'a list
> identity [1;2;3];;
val it : int list = [1; 2; 3]

Notice recursion pattern of:

m Test for base case L. IsEmpty, return base case value []

m Recurse identity(L.Tail), movingc

School of Computing and Data Science - 58/62 -

loser to base case

Frank Kreimendahl | kreimendahlf@wit.edu

4

Recursive all-but-last element

A First Look
at F#

> let rec allbutthelast (L:'a list) =
if (L.Tail=[]) then []
else L.Head::allbutthelast L.Tail;;
val allbutthelast : L:'a list -> 'a list
allbutthelast [1;2;3];;
val it : int list = [1; 2]

The F#

langauge

Notice recursion pattern of:
m Test for base case L. Tail=[], return base case value []

m Recurse allbutthelast L.Tail, moving closer to base
case

School of Computing and Data Science - 59/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Recursive list reverse

A First Look
at F#

The F#
langauge

> let rec reverse (L:'a list) =

if (L=[]) then []

else reverse(L.Tail)@[L.Head];;
val reverse : L:'a list -> 'a list
> reverse [1;2;3];;
val it : int list = [3; 2; 1]

Notice recursion pattern of:
F# Types m Test for base case L=[], return base case value []

m Recurse reverse(L.Tail), moving closer to base case

School of Computing and Data Science - 60/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4

A First Look
at F#

The F#

langauge

Fi# Types

F# Types

School of Computing and Data Science -61/62 - Frank Kreimendahl | kreimendahlf@wit.edu

4 F# Types So Far

A First Look
at F#
The F#

langauge

F# Types

Tkt m So far we have the primitive F# types int, float, bool, char,
and string
m Also we have three type constructors:

® Tuple types using (,)
® List types using [;]
® Function types

School of Computing and Data Science - 62/62 - Frank Kreimendahl | kreimendahlf@wit.edu

	A First Look at F#
	Motivation
	Functional Languages
	F#
	Running F# in IDE
	1+2*3

	The F# langauge
	Constants
	Operators
	Variables
	Tuples and Lists
	Func Definitions

	F# Types
	F# Types So Far

