
C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics

C# Polymorphism

School of Computing and Data Science - 1/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics

Subtype Polymorphism

Example
Person x;

Does this declare x to be a reference to an object of the
Person class?

Not exactly – the type Person may include references to
objects of other related classes

C# has subtype polymorphism

School of Computing and Data Science - 2/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces
Defining Interfaces

Implementing
Interfaces

Example

Why Use Interfaces?

Polymorphism With
Interfaces

Example

Exercise

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics

Interfaces

School of Computing and Data Science - 3/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces
Defining Interfaces

Implementing
Interfaces

Example

Why Use Interfaces?

Polymorphism With
Interfaces

Example

Exercise

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics

Defining Interfaces

A method prototype defines the method name and type – no
method body

C# interface is a collection of method prototypes – no
method bodies allowed

Defines all methods to be implemented

Example
public interface Drawable {

void show(int xPos, int yPos);
void hide();

}

School of Computing and Data Science - 4/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces
Defining Interfaces

Implementing
Interfaces

Example

Why Use Interfaces?

Polymorphism With
Interfaces

Example

Exercise

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics

Implementing Interfaces

A class declares that it implements an interface

The class must then provide public method definitions
matching all those in the interface prototypes

School of Computing and Data Science - 5/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces
Defining Interfaces

Implementing
Interfaces

Example

Why Use Interfaces?

Polymorphism With
Interfaces

Example

Exercise

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics

Example

Example (Interface)
public interface Drawable {

void show(int xPos, int yPos);
void hide();

}

Example (Implementation)
public class Icon : Drawable {

public void show(int x, int y) { /* method body */ }
public void hide() { /* method body */ }
// more methods and fields

}
public class Square : Drawable, Scalable {

// all required methods of all interfaces implemented
}

School of Computing and Data Science - 6/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces
Defining Interfaces

Implementing
Interfaces

Example

Why Use Interfaces?

Polymorphism With
Interfaces

Example

Exercise

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics

Why Use Interfaces?

An interface must be implemented by many classes
following an identical prototype

Interface name can be used as a reference type

Provides a form of multiple inheritance

Example
public class Icon : Drawable...
public class MousePointer : Drawable...
public class Oval : Drawable...

Drawable d;
d = new Icon("i1.gif"); d.show(0,0);
d = new Oval(20,30); d.show(0,0);

School of Computing and Data Science - 7/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces
Defining Interfaces

Implementing
Interfaces

Example

Why Use Interfaces?

Polymorphism With
Interfaces

Example

Exercise

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics

Polymorphism With Interfaces

Example
static void flashoff(Drawable d, int k) {

for (int i = 0; i < k; i++) {
d.show(0,0);
d.hide();

}
}

Class of object referred to by d is not known at compile
time, could be any implementor.

As a class that implements Drawable, it has show and hide
methods defined

School of Computing and Data Science - 8/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces
Defining Interfaces

Implementing
Interfaces

Example

Why Use Interfaces?

Polymorphism With
Interfaces

Example

Exercise

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics

Example

A Stack interface for a collection of Objects with push and
pop methods

An implementation may use a List
An implementation may use an Array

School of Computing and Data Science - 9/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces
Defining Interfaces

Implementing
Interfaces

Example

Why Use Interfaces?

Polymorphism With
Interfaces

Example

Exercise

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics

Interface Example (pt. 1/2)

Example
using System;
using System.Collections.Generic;

interface Stack {
void push(Object o);
Object pop();

}
public class SimpleStack {

public static void Main(){
Stack a = new ListStack();
a.push("ListStack example");
Console.WriteLine(a.pop());

a = new ArrayStack();
a.push("ArrayStack example");
Console.WriteLine(a.pop());

}
}

School of Computing and Data Science - 10/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces
Defining Interfaces

Implementing
Interfaces

Example

Why Use Interfaces?

Polymorphism With
Interfaces

Example

Exercise

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics

Interface Example (pt. 2/2)

Example
class ListStack : Stack {

List <Object> data = new List<Object>();

public void push (Object o) {data.Add(o); }
public Object pop() {

Object obj = data[data.Count - 1];
data.RemoveAt(data.Count - 1);
return obj;

}
}
class ArrayStack : Stack {

Object [] data = new Object[5];
int top = -1;

public void push (Object o){ data[++top] = o; }
public Object pop() { return data[top--]; }

}

School of Computing and Data Science - 11/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces
Defining Interfaces

Implementing
Interfaces

Example

Why Use Interfaces?

Polymorphism With
Interfaces

Example

Exercise

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics

Exercise

1 What is the program output?

2 Locate the interface and implementation.

3 Is polymorphism evident at a.pop()?
4 Is this inheritance?

School of Computing and Data Science - 12/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Extending Classes

School of Computing and Data Science - 13/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Object Representation

School of Computing and Data Science - 14/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Tracing method execution

a.push(-4);

1 follow reference through a to object,

2 follow reference through class attribute of object to class
definition for Stack,

3 follow reference through methods attribute of class definition
to push method,

4 follow reference through push attribute of methods to
executable code for push method.

5 The object referenced by a is the implicit parameter this to
the push method.

6 The push method has full access to the Stack object
referenced by a.

School of Computing and Data Science - 15/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Shapes Example

Example
class Polygon {

private int sides;
public Polygon(int sides) {

this.sides = sides;
}
public double area() { return 0.0; }
public void printOn() {

System.Console.Write(this.GetType() + " " + this.area());
}

}

class Rectangle : Polygon {
private double length, width;
public Rectangle(double length, double width) : base(4) {

this.length = length;
this.width = width;

}
public double area() { return length * width; }

}

School of Computing and Data Science - 16/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Shapes Example

Example
public class Shapes {

public static void Main()
{

Polygon p = new Polygon(8);
Rectangle r = new Rectangle(5.0, 3.0);
r.area();
p.printOn();
r.printOn();

}
}

School of Computing and Data Science - 17/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Object Representation

School of Computing and Data Science - 18/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

More Polymorphism

Class inheritance is source of polymorphism
One class can be derived from another, using the colon
character (:)
For example: a class PeekableStack that is just like Stack,
but also has a peek method

Example
public class PeekableStack : Stack {

/**
* Examine the top element on the stack, without popping it.
* @return the top string from the stack
*/

public string peek() {
string s = remove();
add(s);
return s;

}
}

School of Computing and Data Science - 19/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Inheritance

Because PeekableStack extends Stack, it inherits all its
methods and fields

(Nothing like this happens with interfaces – when a class
implements an interface, all it gets is an obligation to
implement methods)

Through inheritance and interfaces, polymorphism

School of Computing and Data Science - 20/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

PeekableStack

Note that s1.peek() is not legal here, even though s1 is a
reference to a PeekableStack.

It is the static type of the reference, not the object’s class,
that determines the operations C# will permit.

Example
Stack s1 = new PeekableStack();
PeekableStack s2 = new PeekableStack();
s1.add("drive");
s2.add("cart");
System.Console.WriteLine(s2.peek());

School of Computing and Data Science - 21/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Inheritance Chains

A derived class can have more classes derived from it

All classes but one are derived from some class

If you do not give an explicit inheritance class, C# supplies a
default one: : Object
Object is the ultimate base class in C#

A class can make a field visible only in classes that extend it
using the protected keyword, instead of private

School of Computing and Data Science - 22/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

The Class Object

All classes are derived, directly or indirectly, from the
predefined class Object (except Object itself)

All classes inherit methods from Object:
ToString, for converting to a string
equals, for comparing with other objects

hashcode, for computing an int hash code

School of Computing and Data Science - 23/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Overriding Inherited Definitions

Sometimes you want to redefine an inherited method

No special construct for this: a new method definition
automatically overrides an inherited definition of the same
name and type

School of Computing and Data Science - 24/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Overriding Example

The inherited ToString just combines the class name and
hash code (in hexadecimal)

So the code above prints something like: Stack@b3d
A custom ToString method in Stack can override this with a
nicer string

Example
public override string ToString() {

return "Stack with top at " + top;
}

School of Computing and Data Science - 25/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Inheritance Hierarchies

Inheritance forms a hierarchy, a tree rooted at Object
Sometimes inheritance is one useful class extending another

In other cases, it is a way of factoring out common code
from different classes into a shared base class

School of Computing and Data Science - 26/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Example without Refactoring

Example
public class Label {

private int x, y;
private int width;
private int height;
private string text;
public void move

(int newX, int newY)
{

x = newX; y = newY;
}
public string getText()
{ return text; }

}

Example
public class Icon {

private int x, y;
private int width;
private int height;
private Gif image;
public void move

(int newX, int newY)
{

x = newX; y = newY;
}
public Gif getImage()
{ return image; }

}

School of Computing and Data Science - 27/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Example with Refactoring

Example (Base class)
public class Graphic {

protected int x, y;
protected int width, height;
public void move(int newX, int newY) {

x = newX; y = newY;
}

}

Example
public class Label

: Graphic {
private string text;
public string getText()
{ return text; }

}

Example
public class Icon

: Graphic {
private Gif image;
public Gif getImage()
{ return image; }

}

School of Computing and Data Science - 28/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

A Design Problem

When you write the same statements repeatedly, you think:
that should be a method

When you write the same methods repeatedly, you think:
that should be a common base class

The trick is to anticipate the need for a shared base class
early in your code design, before writing a lot of code that
needs to be reorganized

School of Computing and Data Science - 29/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes
Object Representation

Tracing execution

Shapes Example

More Polymorphism

Inheritance

PeekableStack

Inheritance Chains

Object

Overriding

Example

Inheritance Hierarchies

Example

A Design Problem

Subtypes and
Inheritance

Extending and
Implementing

Multiple
Inheritance

Generics

Subtypes and Inheritance

A derived class is a subtype

When designing class hierarchies, think about inheritance of
functionality

Not all intuitively reasonable hierarchies work well for
inheriting functionality

School of Computing and Data Science - 30/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing
Extending And
Implementing

Simple Case

Tricky Case

abstract

Multiple
Inheritance

Generics

Extending and Implementing

School of Computing and Data Science - 31/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing
Extending And
Implementing

Simple Case

Tricky Case

abstract

Multiple
Inheritance

Generics

Extending And Implementing

Classes can use inheritance and interface together
For every class, the C# language system keeps track of
several properties, including:

1 the interfaces it implements
2 the methods it is obliged to define
3 the methods that are defined for it
4 the fields that are defined for it

School of Computing and Data Science - 32/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing
Extending And
Implementing

Simple Case

Tricky Case

abstract

Multiple
Inheritance

Generics

Simple Case For a Class

A method definition affects 3 only

A field definition affects 4 only

An implements part affects 1 and 2

All the interfaces are added to 1
All the methods in them are added to 2

1 the interfaces it implements
2 the methods it is obliged to define
3 the methods that are defined for it
4 the fields that are defined for it

School of Computing and Data Science - 33/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing
Extending And
Implementing

Simple Case

Tricky Case

abstract

Multiple
Inheritance

Generics

Tricky Case For a Class

An extends part affects all four:
• All interfaces of the base class are added to 1
• All methods the base class is obliged to define are added to 2
• All methods of the base class are added to 3
• All fields of the base class are added to 4

1 the interfaces it implements
2 the methods it is obliged to define
3 the methods that are defined for it
4 the fields that are defined for it

School of Computing and Data Science - 34/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing
Extending And
Implementing

Simple Case

Tricky Case

abstract

Multiple
Inheritance

Generics

abstract

Note that 3 is a superset of 2: the class has definitions of all
required methods

C# ordinarily requires this

Classes can get out of this by being declared abstract

An abstract class is used only as a base class – no objects of
that class are created

School of Computing and Data Science - 35/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance
Multiple Inheritance

Collision Problem

Diamond Problem

Single Inheritance

Forwarding

Generics

Multiple Inheritance

School of Computing and Data Science - 36/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance
Multiple Inheritance

Collision Problem

Diamond Problem

Single Inheritance

Forwarding

Generics

Multiple Inheritance

In some languages (such as C++) a class can have more than
one base class

Seems simple at first: just inherit fields and methods from all
the base classes

For example: a multifunction printer

MultiFunction

FaxScannerCopierPrinter

School of Computing and Data Science - 37/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance
Multiple Inheritance

Collision Problem

Diamond Problem

Single Inheritance

Forwarding

Generics

Collision Problem

The different base classes are unrelated, and may not have
been designed to be combined

Scanner and Fax might both have a method named transmit

When MultiFunction.transmit is called, what should
happen?

School of Computing and Data Science - 38/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance
Multiple Inheritance

Collision Problem

Diamond Problem

Single Inheritance

Forwarding

Generics

Diamond Problem

A class may inherit from the same base class through more
than one path

If A defines a field x, then B has one and so does C
Does D get two of them?

A

C

D

B

School of Computing and Data Science - 39/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance
Multiple Inheritance

Collision Problem

Diamond Problem

Single Inheritance

Forwarding

Generics

Solvable, But. . .

A language that supports multiple inheritance must have
mechanisms for handling these problems

Not all that tricky

The question is, is the additional power worth the additional
language complexity?

C#’s designers did not think so

School of Computing and Data Science - 40/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance
Multiple Inheritance

Collision Problem

Diamond Problem

Single Inheritance

Forwarding

Generics

Living Without Multiple Inheritance

One benefit of multiple inheritance is that a class can have
several unrelated types (like Copier and Fax)

This can be done in C# by using interfaces: a class can
implement any number of interfaces

Another benefit is inheriting implementation from multiple
base classes

This is harder to accomplish with C#

School of Computing and Data Science - 41/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance
Multiple Inheritance

Collision Problem

Diamond Problem

Single Inheritance

Forwarding

Generics

Forwarding

Example
public class MultiFunction {

private Printer myPrinter;
private Copier myCopier;
private Scanner myScanner;
private Fax myFax;
public void copy() {

myCopier.copy();
}
public void transmitScanned() {

myScanner.transmit();
}
public void sendFax() {

myFax.transmit();
}
// class code here

}
School of Computing and Data Science - 42/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics
Generic
Classes/Interfaces

Living Without
Generics

Weaknesses

Weaknesses

True Generics

Using Generic Classes

Generics

School of Computing and Data Science - 43/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics
Generic
Classes/Interfaces

Living Without
Generics

Weaknesses

Weaknesses

True Generics

Using Generic Classes

Generic Classes/Interfaces

Previous Stack example: a stack of strings

Can be reused for stacks of other types

In F# we used type variables for this

C#, Ada and C++ have something similar

Example
type mylist =

| NIL
| CONS of ‘a * mylist

School of Computing and Data Science - 44/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics
Generic
Classes/Interfaces

Living Without
Generics

Weaknesses

Weaknesses

True Generics

Using Generic Classes

Living Without Generics

We can make a stack whose element type is Object

The type Object includes all references, so this will allow
any objects to be placed in the stack

School of Computing and Data Science - 45/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics
Generic
Classes/Interfaces

Living Without
Generics

Weaknesses

Weaknesses

True Generics

Using Generic Classes

Example
public class GenericNode {

private Object data;
private GenericNode link;
public GenericNode(Object theData,

GenericNode theLink) {
data = theData;
link = theLink;

}
public Object getData() {

return data;
}
public GenericNode getLink() {

return link;
}

}

School of Computing and Data Science - 46/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics
Generic
Classes/Interfaces

Living Without
Generics

Weaknesses

Weaknesses

True Generics

Using Generic Classes

Weaknesses

To recover the type of the stacked object, we will have to use
an explicit type cast

This is a pain to write, and also inefficient

C# checks at runtime that the type cast is legal – the object
really is a string

Example
GenericStack s1 = new GenericStack();
s1.add("hello");
string s = (string) s1.remove();

School of Computing and Data Science - 47/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics
Generic
Classes/Interfaces

Living Without
Generics

Weaknesses

Weaknesses

True Generics

Using Generic Classes

Weaknesses

Primitive types must first be stored in an object before being
stacked

Again, laborious and inefficient

Int is a defined wrapper class

Example
GenericStack s2 = new GenericStack();
s2.add(new Int(1));
int i = (Int) s2.remove().N;

School of Computing and Data Science - 48/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics
Generic
Classes/Interfaces

Living Without
Generics

Weaknesses

Weaknesses

True Generics

Using Generic Classes

True Generics

Generics in C#: parameterized polymorphic classes (and
interfaces)

Uses a notation like C++ templates

Example
public class Stack<T> : Worklist<T> {

private Node<T> top = null;
public void add(T data) {

top = new Node<T>(data,top);
}
public T remove() {

Node<T> n = top;
top = n.getLink();
return n.getData();

}
}

School of Computing and Data Science - 49/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics
Generic
Classes/Interfaces

Living Without
Generics

Weaknesses

Weaknesses

True Generics

Using Generic Classes

Using Generic Classes

Example
Stack<string> s1 = new Stack<string>();
Stack<int> s2 = new Stack<int>();
s1.add("hello");
string s = s1.remove();
s2.add(1);
int i = s2.remove();

School of Computing and Data Science - 50/51 - Frank Kreimendahl | kreimendahlf@wit.edu

C#
Polymorphism

Interfaces

Extending
Classes

Extending and
Implementing

Multiple
Inheritance

Generics
Generic
Classes/Interfaces

Living Without
Generics

Weaknesses

Weaknesses

True Generics

Using Generic Classes

Example
public class SimpleStack {

public static void Main() {
Stack<double> a = new Stack<double>();
a.push(-4.3);
a.push(9.7);
System.Console.Write(a.pop());

Stack<string> b = new Stack<string>();
b.push("Hello");
System.Console.Write(b.pop());
}

}

class Stack<T> {
private T[] data = new T[5];
private int top = -1;
public void push(T t) { data[++top] = t; }
public T pop() { return data[top--]; }

}

School of Computing and Data Science - 51/51 - Frank Kreimendahl | kreimendahlf@wit.edu

	C# Polymorphism
	Interfaces
	Defining Interfaces
	Implementing Interfaces
	Example
	Why Use Interfaces?
	Polymorphism With Interfaces
	Example
	Exercise

	Extending Classes
	Object Representation
	Tracing execution
	Shapes Example
	More Polymorphism
	Inheritance
	PeekableStack
	Inheritance Chains
	Object
	Overriding
	Example
	Inheritance Hierarchies
	Example
	A Design Problem
	Subtypes and Inheritance

	Extending and Implementing
	Extending And Implementing
	Simple Case
	Tricky Case
	abstract

	Multiple Inheritance
	Multiple Inheritance
	Collision Problem
	Diamond Problem
	Single Inheritance
	Forwarding

	Generics
	Generic Classes/Interfaces
	Living Without Generics
	Weaknesses
	Weaknesses
	True Generics
	Using Generic Classes

