
Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection

Memory Management

School of Computing and Data Science - 1/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection

Dynamic Memory Allocation

Need memory at runtime:
• Activation records
• Objects
• Explicit allocations: new, malloc, etc.
• Implicit allocations: strings, file buffers, arrays with

dynamically varying size, etc.

Language systems provide an important hidden player:
runtime memory management

School of Computing and Data Science - 2/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model
Memory Model

Declaring An Array

Creating An Array

Using An Array

Memory Managers In
C#

Stacks

Heaps

Current Heap
Links

Garbage
Collection

Memory Model

School of Computing and Data Science - 3/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model
Memory Model

Declaring An Array

Creating An Array

Using An Array

Memory Managers In
C#

Stacks

Heaps

Current Heap
Links

Garbage
Collection

Memory Model

For now, assume that the OS grants each running program
one or more fixed-size regions of memory for dynamic
allocation
We will model these regions as C# arrays

• To see examples of memory management code
• And, for practice with C#

School of Computing and Data Science - 4/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model
Memory Model

Declaring An Array

Creating An Array

Using An Array

Memory Managers In
C#

Stacks

Heaps

Current Heap
Links

Garbage
Collection

Declaring An Array

Example (A C# array declaration)
int[] a = null;

Array types are reference types—an array is really an object,
with a little special syntax

The variable a above is initialized to null
It can hold a reference to an array of int values, but does not
yet

School of Computing and Data Science - 5/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model
Memory Model

Declaring An Array

Creating An Array

Using An Array

Memory Managers In
C#

Stacks

Heaps

Current Heap
Links

Garbage
Collection

Creating An Array

Example (Use new to create an
array object)
int[] a = null;
a = new int[4];

Example (Single statement)
int[] a = new int[4];

School of Computing and Data Science - 6/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model
Memory Model

Declaring An Array

Creating An Array

Using An Array

Memory Managers In
C#

Stacks

Heaps

Current Heap
Links

Garbage
Collection

Using An Array

Example
int i = 0;
while (i < a.Length) {

a[i] = 5;
i++;

}

Use a[i] to refer to an element as lvalue or rvalue: a[i] = 5;
• lvalue is memory address: a[i]
• rvalue is a value 5;

a is an array reference expression and i is an int expression

Use a.Length to access length

Array indexes are 0..(a.Length-1)

School of Computing and Data Science - 7/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model
Memory Model

Declaring An Array

Creating An Array

Using An Array

Memory Managers In
C#

Stacks

Heaps

Current Heap
Links

Garbage
Collection

Memory Managers In C#

Example
public class MemoryManager {

private int[] memory;
/**
* MemoryManager constructor.
* @param initialMemory int[] of memory to manage
*/

public MemoryManager(int[] initialMemory) {
memory = initialMemory;

}
...

}

We will show C# implementations this way. The
initialMemory array is the memory region provided by the
operating system.

School of Computing and Data Science - 8/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks
Stacks Of Activation
Records

A Stack Illustration

A C# Stack
Implementation

Heaps

Current Heap
Links

Garbage
Collection

Stacks

School of Computing and Data Science - 9/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks
Stacks Of Activation
Records

A Stack Illustration

A C# Stack
Implementation

Heaps

Current Heap
Links

Garbage
Collection

Stacks Of Activation Records

Recursion requires multiple instances of function execution
or activation

Each instance requires parameters and local data held in
memory defined as the activation record

For recursive languages, activation records must be allocated
dynamically

Generally it suffices to allocate an activation record on call
and deallocate on return

This produces a stack of activation records: push on call,
pop on return

A simple memory management problem

School of Computing and Data Science - 10/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks
Stacks Of Activation
Records

A Stack Illustration

A C# Stack
Implementation

Heaps

Current Heap
Links

Garbage
Collection

A Stack Illustration

An empty stack of 8
words. The stack will
grow down, from high
addresses to lower
addresses.

A reserved memory
location (perhaps a
register) records the
address of the lowest
allocated word.

School of Computing and Data Science - 11/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks
Stacks Of Activation
Records

A Stack Illustration

A C# Stack
Implementation

Heaps

Current Heap
Links

Garbage
Collection

A stack manager m with a memory array of 8 words, initially
empty.

The program calls
m.push(3), which
returns 5: the address of
the first of the 3 words
allocated for an
activation record.

Memory management
uses an extra word to
record the previous
value of top.

School of Computing and Data Science - 12/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks
Stacks Of Activation
Records

A Stack Illustration

A C# Stack
Implementation

Heaps

Current Heap
Links

Garbage
Collection

m.push(3);
m.push(2);

The program calls
m.push(2), which returns
2: the address of the first of
the 2 words allocated for an
activation record. The stack
is now full – there is not
room even for m.push(1).
For m.pop(), just do top =
memory[top] to return to
previous configuration.

School of Computing and Data Science - 13/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks
Stacks Of Activation
Records

A Stack Illustration

A C# Stack
Implementation

Heaps

Current Heap
Links

Garbage
Collection

A C# Stack Implementation

Example
public class StackManager {

private int[] memory; // the memory we manage
private int top; // index of top stack block
/**
* StackManager constructor.
* @param initialMemory int[] of memory to manage
*/

public StackManager(int[] initialMemory) {
memory = initialMemory;
top = memory.Length;

}
...

School of Computing and Data Science - 14/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks
Stacks Of Activation
Records

A Stack Illustration

A C# Stack
Implementation

Heaps

Current Heap
Links

Garbage
Collection

push

Example
/**
* Allocate a block and return its address.
* @param requestSize int size of block, > 0
* @return block address
* @throws StackOverflowException if no stack space
*/

public int push(int requestSize) {
int oldtop = top;
top -= (requestSize+1); //extra word for oldtop
if (top<0)

throw new System.StackOverflowException();
memory[top] = oldtop;
return top+1;

}
School of Computing and Data Science - 15/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks
Stacks Of Activation
Records

A Stack Illustration

A C# Stack
Implementation

Heaps

Current Heap
Links

Garbage
Collection

pop

Example
/**
* Pop the top stack frame. This works only if
* the stack is not empty.
*/

public void pop() {
top = memory[top];

}
}

School of Computing and Data Science - 16/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks
Stacks Of Activation
Records

A Stack Illustration

A C# Stack
Implementation

Heaps

Current Heap
Links

Garbage
Collection

Example
public class StackManager {

private int[] memory; // the memory we manage
private int top; // index of top stack block
public StackManager(int[] initialMemory) {

memory = initialMemory;
top = memory.Length;

}
public int push(int requestSize) {

int oldtop = top;
top -= (requestSize+1); // oldtop extra word
if (top<0)

throw new System.StackOverflowException();
memory[top] = oldtop;
return top+1;

}
public void pop() {

top = memory[top];
}

}

School of Computing and Data Science - 17/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Heaps

School of Computing and Data Science - 18/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

The Heap Problem

Stack order allocation/deallocation makes implementation
easy

Not always possible: what if memory allocations and
deallocations can come in any order?

A heap is a pool of blocks of memory, with an interface for
unordered runtime memory allocation and deallocation

There are many mechanisms for this. . .

School of Computing and Data Science - 19/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

First Fit

A linked list of free blocks, initially containing one big free
block
To allocate:

1 Search free list for first adequate block
2 If there is extra space in the block, return the unused portion

at the upper end to the free list
3 Allocate requested portion (at the lower end)

To free, just add to the front of the free list

School of Computing and Data Science - 20/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Heap Illustration

A heap manager m with a
memory array of 10 words,
initially empty.

The link to the head of the free
list is held in freeStart.

Every block, allocated or free,
has its length in its first word.

Free blocks have free-list link in
their second word, or −1 at the
end of the free list.

School of Computing and Data Science - 21/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

p1=m.allocate(4);

p1 = 1 – the address of the first
of four allocated words.
An extra word holds the block
length.
Remainder of the big free block
was returned to the free list.
6: −1 End of free-list
5: 5 Free block length
0: 5 Block length

School of Computing and Data Science - 22/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

p1=m.allocate(4);
p2=m.allocate(2);

p1 = 1
p2 = 6 – address of first of two
allocated words.
An extra word holds block
length.
Remainder of the free block was
returned to the free list.
9: −1 End of free-list
8: 2 Free block length
5: 3 Block length
0: 5 Block length

School of Computing and Data Science - 23/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

p1=m.allocate(4);
p2=m.allocate(2);
m.deallocate(p1);

Deallocates the first allocated
block, returned to the head of
the free list.
p2 = 6
9: −1 End of free-list
8: 2 Free block length
5: 3 Allocated block length
1: 8 Link to next free block
0: 5 Allocated block length

School of Computing and Data Science - 24/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

p1=m.allocate(4);
p2=m.allocate(2);
m.deallocate(p1);
p3=m.allocate(1);

p2 = 6
p3 = 1 – address of allocated
word.
Two suitable blocks. Other
would have been an exact fit
using Best Fit.
9: −1 End of free-list
8: 2 Free block length.
5: 3 Allocated block length.
3: 8 Link to next free block.
2: 3 Free block length.
0: 2 Block length.

School of Computing and Data Science - 25/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Exercise

p1=m.allocate(4);
p2=m.allocate(2);
m.deallocate(p1);
p3=m.allocate(1);

1 How much memory is free?

2 What is the largest possible
allocation?

3 Can this be allocated?
p4=m.allocate(2);

4 Can this be allocated?
p4=m.allocate(3);

School of Computing and Data Science - 26/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

A C# Heap Implementation

Example
public class HeapManager {

static private final int NULL = -1; // null link
public int[] memory; // the memory we manage
private int freeStart; // start of the free list
/**
* HeapManager constructor.
* @param initialMemory int[] of memory to manage
*/

public HeapManager(int[] initialMemory) {
memory = initialMemory;
memory[0] = memory.Length; // one big free block
memory[1] = NULL; // free list ends with it
freeStart = 0; // free list starts with it

}
School of Computing and Data Science - 27/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Example
/**
* Allocate a block and return its address.
* @param requestSize int size of block, > 0
* @return block address
* @throws OutOfMemoryError if no block big enough
*/

public int allocate(int requestSize) {
int size = requestSize + 1; // size with header
// Do first-fit search: linear search of the free
// list for the first block of sufficient size.
int p = freeStart; // head of free list
int lag = NULL;
while (p!=NULL && memory[p]<size) {

lag = p; // lag is previous p
p = memory[p+1]; // link to next block

}
if (p==NULL) // no block large enough

throw new System.OutOfMemoryException();
int nextFree = memory[p+1]; // block after p

School of Computing and Data Science - 28/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Example
// Now p is the index of a block of sufficient size,
// and lag is the index of p's predecessor in the
// free list, or NULL, and nextFree is the index of
// p's successor in the free list, or NULL.
// If the block has more space than we need, carve
// out what we need from the front and return the
// unused end part to the free list.
int unused = memory[p]-size; // extra space
if (unused>1) { // if more than a header's worth

nextFree = p+size; // index of the unused piece
memory[nextFree] = unused; // fill in size
memory[nextFree+1] = memory[p+1]; // fill in link
memory[p] = size; // reduce p's size accordingly

}
// Link out the block we are allocating and done.
if (lag==NULL) freeStart = nextFree;
else memory[lag+1] = nextFree;
return p+1; // index of useable word (after header)

}

School of Computing and Data Science - 29/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Example
/**
* Deallocate an allocated block. This works only
* if the block address is one that was returned
* by allocate and has not yet been deallocated.
* @param address int address of the block
*/

public void deallocate(int address) {
int addr = address-1;
memory[addr+1] = freeStart;
freeStart = addr;

}
}

School of Computing and Data Science - 30/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

A Problem

Example
p1=m.allocate(4);
p2=m.allocate(2);
m.deallocate(p1);
m.deallocate(p2);
p3=m.allocate(7);

Final allocate will fail: we are breaking up large blocks into
smaller blocks but never reversing the process

Need to coalesce adjacent free blocks

School of Computing and Data Science - 31/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

A Solution

We can implement a smarter deallocate method
• Maintain the free list sorted in address order
• When freeing, look at the previous free block and the next

free block
• If adjacent, coalesce

This is a lot more work than just returning the block to the
head of the free list

School of Computing and Data Science - 32/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Example
/**

* Deallocate an allocated block. This works only
* if the block address is one that was returned
* by allocate and has not yet been deallocated.
* @param address int address of the block
*/

public void deallocate(int address) {
int addr = address-1; // real start of the block

// Find the insertion point in the sorted free
// list for this block.
int p = freeStart;
int lag = NULL;
while (p!=NULL && p<addr) {

lag = p;
p = memory[p+1];

}

School of Computing and Data Science - 33/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Example
// Now p is the index of the block to come after
// ours in the free list, or NULL, and lag is the
// index of the block to come before ours in the
// free list, or NULL.

// If the one to come after ours is adjacent to it,
// merge it into ours and restore the property
// described above.

if (addr+memory[addr]==p) {
memory[addr] += memory[p]; // add its size to ours
p = memory[p+1]; //

}

School of Computing and Data Science - 34/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Example
if (lag==NULL) { // ours will be first free

freeStart = addr;
memory[addr+1] = p;

}
else if (lag+memory[lag]==addr) { // block before is

// adjacent to ours
memory[lag] += memory[addr]; // merge ours into it
memory[lag+1] = p;

}
else { // neither: just a simple insertion

memory[lag+1] = addr;
memory[addr+1] = p;

}
}

School of Computing and Data Science - 35/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Quick Lists

Small blocks tend to be allocated and deallocated much
more frequently

A common optimization: keep separate free lists for popular
(small) block sizes

On these quick lists, blocks are one size

Delayed coalescing: free blocks on quick lists are not
coalesced right away (but may have to be coalesced
eventually)

School of Computing and Data Science - 36/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Fragmentation

When free regions are
separated by allocated
blocks, so that it is not
possible to allocate all of
free memory as one block
More generally: any time a
heap manager is unable to
allocate memory even
though enough is free

• If it allocated more than
requested

• If it does not coalesce
adjacent free blocks

School of Computing and Data Science - 37/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Other Heap Mechanisms

An amazing variety
Three major issues:

• Placement – where to allocate a block
• Splitting – when and how to split large blocks
• Coalescing – when and how to recombine

Many other refinements

School of Computing and Data Science - 38/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Placement

Where to allocate a block

Our mechanism: first fit from FIFO free list

Some mechanisms use a similar linked list of free blocks:
first fit, best fit, next fit, etc.

Some mechanisms use a more scalable data structure like a
balanced binary tree

School of Computing and Data Science - 39/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Splitting

When and how to split large blocks

Our mechanism: split to requested size

Sometimes you get better results with less splitting – just
allocate more than requested

A common example: rounding up allocation size to some
multiple

School of Computing and Data Science - 40/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps
The Heap Problem

First Fit

Heap Illustration

Exercise

A C# Heap
Implementation

A Problem

A Solution

Quick Lists

Fragmentation

Other Heap
Mechanisms

Placement

Splitting

Coalescing

Current Heap
Links

Garbage
Collection

Coalescing

When and how to recombine adjacent free blocks
We saw several varieties:

• No coalescing
• Eager coalescing
• Delayed coalescing (as with quick lists)

School of Computing and Data Science - 41/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links
Current Heap Links

Problem

Discarding Links

Errors In Links

Errors Are Unavoidable

Used Inclusion Errors
In C

Heap Compaction

Garbage
Collection

Current Heap Links

School of Computing and Data Science - 42/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links
Current Heap Links

Problem

Discarding Links

Errors In Links

Errors Are Unavoidable

Used Inclusion Errors
In C

Heap Compaction

Garbage
Collection

Current Heap Links

So far, the running program is a black box: a source of
allocations and deallocations

What does the running program do with addresses
allocated to it?

Some systems track current heap links

A current heap link is a memory location where a value is
stored that the running program will use as a heap address

School of Computing and Data Science - 43/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links
Current Heap Links

Problem

Discarding Links

Errors In Links

Errors Are Unavoidable

Used Inclusion Errors
In C

Heap Compaction

Garbage
Collection

Problem: Find Current Heap Links

Basic problem is to find heap memory to be freed.
Start with the root set: memory locations outside of the heap
with links into the heap

• Active activation records (if on the stack)
• Static variables, etc.
• Dynamic allocations, using keyword new

For each memory location in the set, look at the allocated
block it points to, and add all the memory locations in that
block

Repeat until no new locations are found

School of Computing and Data Science - 44/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links
Current Heap Links

Problem

Discarding Links

Errors In Links

Errors Are Unavoidable

Used Inclusion Errors
In C

Heap Compaction

Garbage
Collection

Discarding Impossible Links

Depending on the language and implementation, we may be
able to discard (ignore) some locations from the set:

• If they do not point into allocated heap blocks
• If they do not point to allocated heap blocks (C#, but not C),

for example: Intlist a = null;
• If their static type rules out use as heap links (C#, but not C)

and cannot be freed: int a = 5

School of Computing and Data Science - 45/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links
Current Heap Links

Problem

Discarding Links

Errors In Links

Errors Are Unavoidable

Used Inclusion Errors
In C

Heap Compaction

Garbage
Collection

Errors In Current Heap Links

Exclusion errors: a memory location that actually is a
current heap link is left out

Unused inclusion errors: a memory location is included, but
the program never actually uses the value stored there

Used inclusion errors: a memory location is included, but
the program uses the value stored there as something other
than a heap address – as an integer in C, for example

School of Computing and Data Science - 46/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links
Current Heap Links

Problem

Discarding Links

Errors In Links

Errors Are Unavoidable

Used Inclusion Errors
In C

Heap Compaction

Garbage
Collection

Errors Are Unavoidable

For heap manager purposes, exclusion errors are
unacceptable

We must include a location if it might be used as a heap link
(e.g. aliased reference undetectable)

This makes unused inclusion errors unavoidable

Depending on the language, used inclusions may also be
unavoidable (e.g. if aliases are allowed)

School of Computing and Data Science - 47/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links
Current Heap Links

Problem

Discarding Links

Errors In Links

Errors Are Unavoidable

Used Inclusion Errors
In C

Heap Compaction

Garbage
Collection

Used Inclusion Errors In C

Static type and runtime value may be of no use in telling
how a value will be used

Variable x may be used either as a pointer or as an int.

Example
union {

char *p; /* May hold heap address */
int i; /* int */

} x;
x.p = (char *) malloc(5);
x.i++;

School of Computing and Data Science - 48/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links
Current Heap Links

Problem

Discarding Links

Errors In Links

Errors Are Unavoidable

Used Inclusion Errors
In C

Heap Compaction

Garbage
Collection

Heap Compaction

One approach based on current heap links
Memory manager follows links and moves allocated blocks:

• Copy the block to a new location
• Update all links referencing that block

So it can compact the heap, moving all allocated blocks to
one end, leaving one big free block and no fragmentation
When to compact?

• After every deallocation but may not be necessary
• When there’s no free heap memory (execution suspended

while memory manager executes). Bad for time sensitive
operations.

School of Computing and Data Science - 49/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Garbage Collection

School of Computing and Data Science - 50/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Common Human Managed Pointer Errors

Example
int *a = new int();
int *b = a;
delete(b);
*a = 21; Dangling pointer: uses a reference

after the memory it pointed to has
been deallocated

Example
int *a = new int();
a = new int(); Memory leak: first allocation (100)

not deallocated and not now
accessible

School of Computing and Data Science - 51/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Garbage Collection

Since so many errors are caused by improper deallocation. . .

. . . and since it is a burden on the programmer to have to
worry about it. . .

. . . why not have the language system reclaim blocks
automatically?

School of Computing and Data Science - 52/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Three Major Approaches

Mark and sweep

Copying

Reference counting

School of Computing and Data Science - 53/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Mark And Sweep

A mark-and-sweep
collector uses current heap
links in a two-stage
process:

• Mark: find the live heap
links and mark all the
heap blocks linked to by
them

• Sweep: make a pass over
the heap and return
unmarked blocks to the
free pool

Blocks are not moved, so
used and unused inclusion
errors are tolerated

School of Computing and Data Science - 54/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Mark and Sweep Implementation

Performed only when memory is nearly exhausted.

Mark phase: follow roots of all lists, marking each as visited.

Sweep phase: examine all memory, if not marked reclaim,
adding to free-list, set all memory to unmarked.

This was the first GC algorithm, devised by John McCarthy for
Lisp.

School of Computing and Data Science - 55/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

.NET CLR Garbage Collection Rules

All garbage-collectable objects are allocated from one contiguous range of address
space.

Heap divided into generations so possible to eliminate most of the garbage by
looking at only a small fraction of the heap.

Objects within a generation are all roughly the same age.

Higher-numbered generations indicate areas of the heap with older objects – those
objects are much more likely to be stable.

The oldest objects are at the lowest addresses, while new objects are created at
increasing addresses.

The allocation pointer for new objects marks the boundary between the used
(allocated) and unused (free) areas of memory.

Periodically the heap is compacted by removing dead objects and sliding the live
objects up toward the low-address end of the heap. This expands the unused area at
the bottom of the diagram in which new objects are created.

Order of objects in memory remains the order in which created, for good locality.

There are never any gaps between objects in the heap.

Only part of the free space is committed. When necessary, more memory is
acquired from the operating system in the reserved address range.

School of Computing and Data Science - 56/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Diagram

School of Computing and Data Science - 57/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Tasks of new instruction

Calculate total amount of memory required for object

Examine managed heap to ensure room for object

Return the reference to the caller, advance the next object
pointer to point to the next available slot on the managed
heap

School of Computing and Data Science - 58/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Allocate objects sequentially on heap

Rule: If the managed heap does not have sufficient memory
to allocate a requested object, a garbage collection will
occur.

School of Computing and Data Science - 59/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Reachable Objects

Follow stack object pointers into heap

School of Computing and Data Science - 60/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Optimize Decision

Object generations:
• Each object assigned generation (e.g. 0 to 2)

▶ Generation 0: newly allocated objects
▶ Generation 1: objects GCed once
▶ Generation 2: objects GCed twice

• Generation 0 most active (temporary objects)
• GC Generation 0, if allocate fails, GC older generations.

School of Computing and Data Science - 61/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Garbage Collection Steps

Mark: Garbage collector searches for managed objects
referenced in managed code

Sweep: Garbage collector attempts to finalize objects that
are unreachable

Sweep: Garbage collector frees objects that are unmarked
and reclaims their memory

School of Computing and Data Science - 62/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Finalize in C#

Allows an Object to attempt to free resources and perform
other cleanup operations before the Object is reclaimed by
garbage collection.

Example: Write object to a file.

Implement a finalizer only if there are unmanaged resources
to dispose, such as files, network connections, etc.

Finalize is not called directly or overridden but is implicitly
called when a destructor executes.

In following example, ~ExampleClass() destructor executed
when ExampleClass object has no references (to
deallocate).

School of Computing and Data Science - 63/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Example (Destructor)
using System;
using System.Diagnostics;
public class ExampleClass {

Stopwatch sw;
public ExampleClass() {

sw = Stopwatch.StartNew();
Console.WriteLine("Instantiated object");

}
~ExampleClass() {

sw.Stop();
Console.WriteLine("Finalizing instance {0}."

+ " Existed {1}", this, sw.Elapsed);
}

}
public class Demo {

public static void Main() {
ExampleClass ex = new ExampleClass();
ex.ShowDuration();

}
}

School of Computing and Data Science - 64/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Reference Count Steps

Rather than mark and sweep, keeping track of a count of
references on each object can aid with garbage collection.

Set count to 1 on allocation,

Increment by 1 with each new reference,

Decrement by 1 whenever a name no longer references,

Reclaim memory when the reference count becomes 0.

School of Computing and Data Science - 65/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Allocating a Reference Count Cell

The following assumes that generic memory cells are
allocated for use in representing the universal data structure
of a linked list.

Used in languages such as Objective-C, Scheme, Lisp, etc.

Example
class Cell {

Object left, right;
int count=1;

}
... Cell Q = new Cell();

School of Computing and Data Science - 66/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Deallocate – Decrement Count

Each time another name references the same memory
(aliases) the count is incremented by 1.

Whenever a name no longer references a location the count
is decremented using the following code:

Example
void decrement(Cell c) {

c.count--;
if(c.count == 0) {

decrement(c.right);
decrement(c.left);
delete c;

}
}

School of Computing and Data Science - 67/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Deallocate Example

Before decrement(R) on the
memory references

After decrement(R) on the
memory references

After decrement(Q) on the
memory references, cell
having count of 0 are
reclaimed.

School of Computing and Data Science - 68/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Reference Counting Problem

One problem with reference counting: it misses cycles of
garbage.
Here, a circularly linked list is pointed to by circle.

School of Computing and Data Science - 69/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Reference Counting Problem

When circle is set to null, the reference counter is
decremented.
No reference counter is zero, though all blocks are garbage.

School of Computing and Data Science - 70/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Reference Counting

Problem with cycles of garbage

Problem with performance generally, since the overhead of
updating reference counters is high, must follow links

One advantage: naturally incremental, with no big pause as
collecting occurs constantly, when reference counter = 0

School of Computing and Data Science - 71/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Garbage Collecting Refinements

Generational collectors
• Divide block into generations according to age
• Garbage collect in younger generations more often (using

previous methods)
Incremental collectors

• Collect garbage a little at a time
• Avoid the uneven performance of ordinary mark-and-sweep

and copying collectors

School of Computing and Data Science - 72/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Garbage Collecting Languages

Some require it: C#, ML, Scala, Scheme, Lisp

Some encourage it: Ada
Some make it difficult: Objective-C, C, C++

• Objective-C has GC but only recently
• Even for C and C++ it is possible
• STL and other libraries that replace the usual malloc/free

with a garbage-collecting manager

School of Computing and Data Science - 73/74 - Frank Kreimendahl | kreimendahlf@wit.edu

Memory
Management

Memory
Model

Stacks

Heaps

Current Heap
Links

Garbage
Collection
Pointer Errors

Garbage Collection

3 Approaches

Mark And Sweep

Implementation

.NET GC Rules

Allocate Sequentially

Optimize Decision

GC Steps

Finalize in C#

Reference Counting

Allocate a Cell

Deallocate a Cell

GC Refinements

GC Languages

Conclusion

Memory management is an important hidden player in
language systems

Performance and reliability are critical

Different techniques are difficult to compare, since every run
of every program makes different memory demands

An active area of language systems research and
experimentation

School of Computing and Data Science - 74/74 - Frank Kreimendahl | kreimendahlf@wit.edu

	Memory Management
	Memory Model
	Memory Model
	Declaring An Array
	Creating An Array
	Using An Array
	Memory Managers In C#

	Stacks
	Stacks Of Activation Records
	A Stack Illustration
	A C# Stack Implementation
	

	Heaps
	The Heap Problem
	First Fit
	Heap Illustration
	Exercise
	A C# Heap Implementation
	A Problem
	A Solution
	Quick Lists
	Fragmentation
	Other Heap Mechanisms
	Placement
	Splitting
	Coalescing

	Current Heap Links
	Current Heap Links
	Problem
	Discarding Links
	Errors In Links
	Errors Are Unavoidable
	Used Inclusion Errors In C
	Heap Compaction

	Garbage Collection
	Pointer Errors
	Garbage Collection
	3 Approaches
	Mark And Sweep
	Implementation
	.NET GC Rules
	Allocate Sequentially
	Optimize Decision
	GC Steps
	Finalize in C#
	Reference Counting
	Allocate a Cell
	Deallocate a Cell
	GC Refinements
	GC Languages

