
Variables in
Memory
A Binding Question

Functional Meets
Imperative

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Variables in Memory

School of Computing and Data Science - 1/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory
A Binding Question

Functional Meets
Imperative

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

A Binding Question

Variables are bound (dynamically) to values

Those values must be stored somewhere

Therefore, variables must somehow be bound to memory
locations

But how?

School of Computing and Data Science - 2/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory
A Binding Question

Functional Meets
Imperative

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Functional Meets Imperative

Imperative languages expose the concept of memory
locations: a := 0

• Store a zero in a’s memory location
Functional languages hide it: let a = 0

• Bind a to the value zero

But both need to connect variables to values represented in
memory

So both face the same binding question

School of Computing and Data Science - 3/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records
Function Activations

Activation-Specific
Variables

Block Activations

Other Lifetimes For
Variables

Scope And Lifetime
Differ

Other Lifetimes For
Variables

Activation Records

Block Activation
Records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Activation records

School of Computing and Data Science - 4/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records
Function Activations

Activation-Specific
Variables

Block Activations

Other Lifetimes For
Variables

Scope And Lifetime
Differ

Other Lifetimes For
Variables

Activation Records

Block Activation
Records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Function Activations

The lifetime of one execution of a function, from call to
corresponding return, is called an activation of the function

When each activation has its own binding of a variable to a
memory locations, it is an activation-specific variable

(Also called dynamic or automatic)

School of Computing and Data Science - 5/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records
Function Activations

Activation-Specific
Variables

Block Activations

Other Lifetimes For
Variables

Scope And Lifetime
Differ

Other Lifetimes For
Variables

Activation Records

Block Activation
Records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Activation-Specific Variables

In most modern languages, activation-specific variables are the
most common kind:

Example
let rec fact n =

if n = 0 then 1
else n * fact (n-1)

Example
int fact(int n) {

if (n==0) return 1;
else

return n * fact(n-1);
}

School of Computing and Data Science - 6/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records
Function Activations

Activation-Specific
Variables

Block Activations

Other Lifetimes For
Variables

Scope And Lifetime
Differ

Other Lifetimes For
Variables

Activation Records

Block Activation
Records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Block Activations

For block constructs that contain code, we can speak of an
activation of the block

The lifetime of one execution of the block

A variable might be specific to an activation of a particular
block within a function:

Example
let rec fact n =

if n=0 then 1
else

let b = fact (n-1)
in
n*b

Example
int fact(int n) {

if (n==0) return 1;
else
{

int b = fact(n-1);
return n*b;

}
}

School of Computing and Data Science - 7/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records
Function Activations

Activation-Specific
Variables

Block Activations

Other Lifetimes For
Variables

Scope And Lifetime
Differ

Other Lifetimes For
Variables

Activation Records

Block Activation
Records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Other Lifetimes For Variables

Most imperative languages have a way to declare a variable
that is bound to a single memory location for the entire
runtime

Obvious binding solution: static allocation (classically, the
loader allocates these)

Example
int count = 0; // global scope
int nextcount() {

return ++count;
}

School of Computing and Data Science - 8/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records
Function Activations

Activation-Specific
Variables

Block Activations

Other Lifetimes For
Variables

Scope And Lifetime
Differ

Other Lifetimes For
Variables

Activation Records

Block Activation
Records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Scope And Lifetime Differ

In most modern languages, variables with local scope have
activation-specific lifetimes, at least by default

However, these two aspects can be separated, as in C:

Example
int nextcount() {

static int count = 0; // local scope
count = count + 1;
return count;

}

School of Computing and Data Science - 9/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records
Function Activations

Activation-Specific
Variables

Block Activations

Other Lifetimes For
Variables

Scope And Lifetime
Differ

Other Lifetimes For
Variables

Activation Records

Block Activation
Records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Other Lifetimes For Variables

Object-oriented languages use variables whose lifetimes are
associated with object lifetimes

Some languages have variables whose values are persistent:
they last across multiple executions of the program

Will focus on activation-specific variables

School of Computing and Data Science - 10/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records
Function Activations

Activation-Specific
Variables

Block Activations

Other Lifetimes For
Variables

Scope And Lifetime
Differ

Other Lifetimes For
Variables

Activation Records

Block Activation
Records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Activation Records

Language implementations usually allocate all the
activation-specific variables of a function together as an
activation record
The activation record also contains other activation-specific
data, such as

• Return address: where to go in the program when this
activation returns

• Link to caller’s activation record: more about this soon

School of Computing and Data Science - 11/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records
Function Activations

Activation-Specific
Variables

Block Activations

Other Lifetimes For
Variables

Scope And Lifetime
Differ

Other Lifetimes For
Variables

Activation Records

Block Activation
Records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Block Activation Records

When a block is entered, space must be found for the local
variables of that block
Various possibilities:

• Preallocate (static) in the containing function’s activation
record

• Extend the function’s activation record when the block is
entered (and revert when exited)

• Allocate separate block activation records

Our illustrations will show the static option

School of Computing and Data Science - 12/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation
Static Allocation

Fortran Example

Value and Reference
Parameter Passing

Reference passing
danger

Exercise

Static Allocation

Drawbacks

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Static Allocation

School of Computing and Data Science - 13/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation
Static Allocation

Fortran Example

Value and Reference
Parameter Passing

Reference passing
danger

Exercise

Static Allocation

Drawbacks

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Static Allocation

The simplest approach: allocate one activation record for
every function, statically

Older dialects of Fortran and Cobol used this system

Simple and fast

School of Computing and Data Science - 14/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation
Static Allocation

Fortran Example

Value and Reference
Parameter Passing

Reference passing
danger

Exercise

Static Allocation

Drawbacks

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Fortran Example

Example
FUNCTION AVG (ARR, N)
DIMENSION ARR(N)
SUM = 0.0
DO 100 I = 1, N

SUM = SUM + ARR(I)
100 CONTINUE

AVG = SUM / FLOAT(N)
RETURN
END

N Address
ARR Address

return Address
I

SUM

AVG

School of Computing and Data Science - 15/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation
Static Allocation

Fortran Example

Value and Reference
Parameter Passing

Reference passing
danger

Exercise

Static Allocation

Drawbacks

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Value and Reference Parameter Passing

Example
x = 2;
y = 3;
switch(x, y);
...
void switch(float &a, float &b) {

float t = a;
a = b;
b = t;

}

x after y after
pass by reference 3 2

pass by value 2 3

School of Computing and Data Science - 16/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation
Static Allocation

Fortran Example

Value and Reference
Parameter Passing

Reference passing
danger

Exercise

Static Allocation

Drawbacks

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Reference passing danger

Passing literals by reference must be prevented

Question: How can this problem be prevented?

Example
x = 2 + 2;
three(2);
x = 2 + 2;
...
void three(int &n) {

n=3;
}

School of Computing and Data Science - 17/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation
Static Allocation

Fortran Example

Value and Reference
Parameter Passing

Reference passing
danger

Exercise

Static Allocation

Drawbacks

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Exercise

Example (C++ Result?)
void SUB(int &K, float &X) {

K = 1;
X = 20;

}

void main(void) {
float A[2];
int I;
I = 0;
A[0] = 10;
A[1] = 11;
SUB(I, A[I]);
cout << A[0] << " " << A[1] << "\n";

}
School of Computing and Data Science - 18/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation
Static Allocation

Fortran Example

Value and Reference
Parameter Passing

Reference passing
danger

Exercise

Static Allocation

Drawbacks

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Static Allocation

Simple, only one activation record per procedure.

Memory allocation done at load time.

Does not allow recursion. Why?

Does not allow for nested scope. Why?

Faster than dynamic allocation.

School of Computing and Data Science - 19/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation
Static Allocation

Fortran Example

Value and Reference
Parameter Passing

Reference passing
danger

Exercise

Static Allocation

Drawbacks

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR

Drawbacks to Static AR Allocation

Each function has one activation record

There can be only one activation alive at a time
Modern languages (including modern dialects of Cobol and
Fortran) do not obey this restriction:

• Recursion
• Multithreading
• Nested scopes

School of Computing and Data Science - 20/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs
Stacks Of Activation
Records

Current Activation
Record

C Example

Exercise

Nested
functions

Functions as
parameters

Long-lived AR

Stacks of ARs

School of Computing and Data Science - 21/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs
Stacks Of Activation
Records

Current Activation
Record

C Example

Exercise

Nested
functions

Functions as
parameters

Long-lived AR

Stacks Of Activation Records

To support recursion, we need to allocate a new activation
record for each activation

Dynamic allocation: activation record allocated when
function is called

For many languages, like C, it can be deallocated when the
function returns

A stack of activation records: stack frames pushed on call,
popped on return

School of Computing and Data Science - 22/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs
Stacks Of Activation
Records

Current Activation
Record

C Example

Exercise

Nested
functions

Functions as
parameters

Long-lived AR

Current Activation Record

Static: location of activation record was determined by
compile time

Dynamic: location of the current activation record is not
known until runtime

A function must know how to find the address of its current
activation record

Often, a special machine register (ebp on Intel) holds current
activation record address

School of Computing and Data Science - 23/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs
Stacks Of Activation
Records

Current Activation
Record

C Example

Exercise

Nested
functions

Functions as
parameters

Long-lived AR

C Example

We are evaluating fact(3). This shows the
contents of memory just before the recursive
call that creates a second activation.

Example
int fact(int n) {

int result;
if (n<2) result = 1;
else result = n * fact(n-1);
return result;

}

School of Computing and Data Science - 24/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs
Stacks Of Activation
Records

Current Activation
Record

C Example

Exercise

Nested
functions

Functions as
parameters

Long-lived AR

Second call

This shows the
contents of
memory just before
the third activation.

School of Computing and Data Science - 25/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs
Stacks Of Activation
Records

Current Activation
Record

C Example

Exercise

Nested
functions

Functions as
parameters

Long-lived AR

Third call

This shows the contents of memory just before the third
activation returns.

School of Computing and Data Science - 26/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs
Stacks Of Activation
Records

Current Activation
Record

C Example

Exercise

Nested
functions

Functions as
parameters

Long-lived AR

Returning from second call

The second activation is about to return.

School of Computing and Data Science - 27/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs
Stacks Of Activation
Records

Current Activation
Record

C Example

Exercise

Nested
functions

Functions as
parameters

Long-lived AR

Returning from first call

The first activation is about to return with the result fact(3) = 6.

School of Computing and Data Science - 28/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs
Stacks Of Activation
Records

Current Activation
Record

C Example

Exercise

Nested
functions

Functions as
parameters

Long-lived AR

Exercise

Diagram the stack to deepest call:

Example
int power (int x, int e) {

if (e == 0) return 1;
else return x * power(x, e-1);

}

power (3, 2);

School of Computing and Data Science - 29/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

Nested functions

School of Computing and Data Science - 30/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

Handling Nesting Functions

What we just saw is adequate for many languages, including
C
But not for languages that allow:

• Function definitions can be nested inside other function
definitions

• Inner functions that can refer to local variables of the outer
functions (under the usual block scoping rule)

Like F#, Scala, JavaScript, Pascal, Java, etc.

School of Computing and Data Science - 31/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

C++ Nested Scope

Example
a: int x = 5;

{ b: int y = x+3;
{ c: int z = x+y+4;
}

}

School of Computing and Data Science - 32/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

F# Nested Scope

pivot on the last line refers to a variable outside the current scope.

Example
let rec quicksort L1 = match L1 with

| [] -> []
| pivot::rest ->

let rec split L2 =
match L2 with

| [] -> ([], [])
| x::xs ->

let (below, above) = split xs
in
if x<pivot then (x::below, above)
else (below, x::above)

in
let (below, above) = split rest
in
quicksort below@[pivot]@(quicksort above)

School of Computing and Data Science - 33/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

The Problem

How can an activation of the inner function (split) find the
activation record of the outer function (quicksort)?
It isn’t necessarily the previous activation record, since the
caller of the inner function may be another inner function

Or it may call itself recursively, as split does. . .

School of Computing and Data Science - 34/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

Dynamic link points to caller’s activation record

School of Computing and Data Science - 35/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

Nesting Link

An inner function needs to be able to find the address of the
most recent activation for the outer function

We can keep this nesting link in the activation record

School of Computing and Data Science - 36/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

Setting The Nesting Link

Easy if there is only one level of nesting:
• Calling outer function: set to null
• Calling from outer to inner: set nesting link same as caller’s

activation record
• Calling from inner to inner: set nesting link same as caller’s

nesting link

More complicated if there are multiple levels of nesting

School of Computing and Data Science - 37/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

Multiple Levels Of Nesting

References at the same level (f1 to v1, f2 to v2, f3 to v3) use
current activation record

References n nesting levels away chain back through n
nesting links

Static Link – Points to activation record of enclosing block.

Dynamic Link – Points to activation record of caller.

School of Computing and Data Science - 38/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

Static Nesting

Example
Void a()
{ int N;

N = 1;
b(19.3);

}
Void b(float sum) {

int i;
float avg;
float Data[2];
N = 2;
c(5.8);

}
Void c (float val) {

cout << val;
}
Void main() {

a();
}

School of Computing and Data Science - 39/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

Static Nesting

Example
void main()
{ void a()

{ int N;
void b(float sum)
{ int i;

float avg;
float Data[2];
void c(float val)
{ cout << sum;

cout << N;
a();

}
N = 2;
c(5.8);

}
N = 1;
b(19.3);

}
a();

}
School of Computing and Data Science - 40/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

Static Nesting Definitions

Activation record – Contains local variables, parameters, links, etc.

ep – Environment pointer to current activation record.

ip – Instruction pointer to the current instruction.

Dynamic link – Points to the calling function’s activation record.

Static link – Points to the enclosing environment’s activation record. Represents
the non-local data accessible to the function.

Static chain – The static links from one enclosing environment to another.

SNL (Static Nesting Level) – The number of enclosing environments where a
symbol is defined or used.

SD (Static Distance) – Difference between the SNL of definition and SNL of use,
more intuitively, the number of static links in the static chain. SD to local data is 0,
SD to nearest enclosing function is 1, etc.

Symbol table – In statically nested environments, table recording symbol name,
data type, SNL, and offset within the activation record. Used at compile time to
generate code to access data bound to symbol.

School of Computing and Data Science - 41/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions
Handling Nesting
Functions

Nested Scopes

The Problem

Nesting Link

Setting The Nesting
Link

Multiple Levels Of
Nesting

Static Nesting

Static Nesting
Definitions

Other Solutions

Functions as
parameters

Long-lived AR

Other Solutions

The problem: references from inner functions to variables in
outer ones

• Nesting links in activation records: as shown
• Displays: nesting links not in the activation records, but

collected in a single static array
• Lambda lifting: problem references replaced by references to

new, hidden parameters

School of Computing and Data Science - 42/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters
Functions As
Parameters

Exercise

F# Example

Nesting Links Again

Not Just For Parameters

F# Example

Long-lived AR

Functions as parameters

School of Computing and Data Science - 43/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters
Functions As
Parameters

Exercise

F# Example

Nesting Links Again

Not Just For Parameters

F# Example

Long-lived AR

Functions As Parameters

When you pass a function as a parameter, what really gets
passed?

Code must be part of it: source code, compiled code, pointer
to code, or implementation in some other form

For some languages, something more is required

School of Computing and Data Science - 44/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters
Functions As
Parameters

Exercise

F# Example

Nesting Links Again

Not Just For Parameters

F# Example

Long-lived AR

Exercise

Trace lines executed. What is the output?

Example (C++)
void p(int x) {

cout << "p " << 2*x;
}
void t(int x) {

cout << "t " << x*x;
}
void q(void fp(int), int x) {

fp(x);
}
void main(void) {

q(p, -4);
q(t, -5);

}
School of Computing and Data Science - 45/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters
Functions As
Parameters

Exercise

F# Example

Nesting Links Again

Not Just For Parameters

F# Example

Long-lived AR

C++ Example

Without nested environments, only the function address is passed
as a parameter.

Table: Memory Layout

Memory Address
426

AR(p) -4 425 PAR[1]
424 IP

419 423 DL
&p=1 422 PAR[1]

AR(q) -4 421 PAR[2]
9 420 IP
417 419 DL

AR(main) 12 418 IP
OS 417 DL

School of Computing and Data Science - 46/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters
Functions As
Parameters

Exercise

F# Example

Nesting Links Again

Not Just For Parameters

F# Example

Long-lived AR

F# Example

Example
let rec map f L =

match L with
| [] -> []
| h::t -> f h::(map f t)

let addXToAll x theList =
let addX y = y + x
in
map addX theList

This function adds x to each element of theList
Notice: addXToAll calls map, map calls addX, and addX
refers to a variable x in addXToAll’s activation record

School of Computing and Data Science - 47/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters
Functions As
Parameters

Exercise

F# Example

Nesting Links Again

Not Just For Parameters

F# Example

Long-lived AR

Nesting Links Again

When map calls addX, what nesting link will addX be
given?

• Not map’s activation record: addX is not nested inside map
• Not map’s nesting link: map is not nested inside anything

To make this work, the parameter addX passed to map must
include the nesting link to use when addX is called

School of Computing and Data Science - 48/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters
Functions As
Parameters

Exercise

F# Example

Nesting Links Again

Not Just For Parameters

F# Example

Long-lived AR

Not Just For Parameters

Many languages allow functions to be passed as parameters
Functional languages allow many more kinds of operations
on function-values:

• passed as parameters
• returned from functions
• constructed by expressions
• etc.

Function-values include both code to call, and nesting link to
use when calling it

School of Computing and Data Science - 49/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters
Functions As
Parameters

Exercise

F# Example

Nesting Links Again

Not Just For Parameters

F# Example

Long-lived AR

F# Example

This shows the contents
of memory just before the
call to map. The variable
addX is bound to a
function-value including
code and nesting link.

Example
let addXToAll x theList =

let addX y = y + x
in
map addX theList

School of Computing and Data Science - 50/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR
One More
Complication

The Problem

Java Example

The Solution

Conclusion

Long-lived AR

School of Computing and Data Science - 51/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR
One More
Complication

The Problem

Java Example

The Solution

Conclusion

One More Complication

What happens if a function value is used after the function that
created it has returned?

Example
let funToAddX x =

let addX y = y + x
in
addX;;

let test =
let f = funToAddX 3
in
f 5;;

School of Computing and Data Science - 52/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR
One More
Complication

The Problem

Java Example

The Solution

Conclusion

One More Complication

This shows the contents
of memory just before
funToAddX returns.

Example
let funToAddX x =

let addX y = y + x
in
addX;;

let test =
let f = funToAddX 3
in
f 5;;

School of Computing and Data Science - 53/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR
One More
Complication

The Problem

Java Example

The Solution

Conclusion

One More Complication

After funToAddX
returns, f is the bound to
the new function-value.

test calls f which is y
=> y + x

To access x=3 in
test, must link to
activation record for
funToAddX that is
already finished

Fails if the language
system deallocated
that activation record
when funToAddX
returned

School of Computing and Data Science - 54/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR
One More
Complication

The Problem

Java Example

The Solution

Conclusion

The Problem

When test calls f, the function will use its nesting link to
access x

That is a link to an activation record for an activation that is
finished

This will fail if the language system deallocated that
activation record when the function returned

School of Computing and Data Science - 55/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR
One More
Complication

The Problem

Java Example

The Solution

Conclusion

Java Example

What is the output?

Example
public class Example {

public static void main(String a[]) {
int TI[] = ThreeInts();
for (int i=0; i<3; i++)

System.out.print(TI[i]);
}
public static int[] ThreeInts() {

int ti[] = {10,11,12};

for (int i=0; i<3; i++)
System.out.print(ti[i]);

return ti;
}

}

School of Computing and Data Science - 56/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR
One More
Complication

The Problem

Java Example

The Solution

Conclusion

The Solution

For F#, and other languages that have this problem,
activation records cannot always be allocated and
deallocated in stack order

Even when a function returns, there may be links to its
activation record that will be used; it can’t be deallocated if
it is reachable

Garbage collection: coming soon!

School of Computing and Data Science - 57/58 - Frank Kreimendahl | kreimendahlf@wit.edu

Variables in
Memory

Activation
records

Static
Allocation

Stacks of ARs

Nested
functions

Functions as
parameters

Long-lived AR
One More
Complication

The Problem

Java Example

The Solution

Conclusion

Conclusion

The more sophisticated the language, the harder it is to bind
activation-specific variables to memory locations

Static allocation: works for languages that permit only one
activation at a time (like early dialects of Fortran and Cobol)

Simple stack allocation: works for languages that do not
allow nested functions (like C)

Nesting links (or some such trick): required for languages
that allow nested functions (like F#, Ada and Pascal);
function values must include both code and nesting link

Some languages (like F#) permit references to activation
records for activations that are finished, so activation records
cannot be deallocated on return

School of Computing and Data Science - 58/58 - Frank Kreimendahl | kreimendahlf@wit.edu

	Variables in Memory
	A Binding Question
	Functional Meets Imperative

	Activation records
	Function Activations
	Activation-Specific Variables
	Block Activations
	Other Lifetimes For Variables
	Scope And Lifetime Differ
	Other Lifetimes For Variables
	Activation Records
	Block Activation Records

	Static Allocation
	Static Allocation
	Fortran Example
	Value and Reference Parameter Passing
	Reference passing danger
	Exercise
	Static Allocation
	Drawbacks

	Stacks of ARs
	Stacks Of Activation Records
	Current Activation Record
	C Example
	Exercise

	Nested functions
	Handling Nesting Functions
	Nested Scopes
	
	The Problem
	Nesting Link
	Setting The Nesting Link
	Multiple Levels Of Nesting
	Static Nesting
	Static Nesting Definitions
	Other Solutions

	Functions as parameters
	Functions As Parameters
	Exercise
	F# Example
	Nesting Links Again
	Not Just For Parameters
	F# Example

	Long-lived AR
	One More Complication
	The Problem
	Java Example
	The Solution
	Conclusion

