
Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Language Systems

School of Computing and Data Science - 1/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

The Classical Sequence

Integrated development environments are wonderful, but. . .

Old-fashioned, un-integrated systems make the steps
involved in running a program more clear

We will look the classical sequence of steps involved in
running a program

(The example is generic: details vary from machine to
machine)

School of Computing and Data Science - 2/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Creating

The programmer uses an editor to create a text file
containing the program

A high-level language: machine independent

This C-like example program calls the function fred 100
times, passing each i from 1 to 100:

Example
int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

School of Computing and Data Science - 3/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Compiling

Compiler translates to assembly language

Machine-specific

Each line represents either a piece of data, or a single
machine-level instruction

Programs used to be written directly in assembly language,
before Fortran (1957)

Now used directly only when the compiler does not do what
you want, which is rare

School of Computing and Data Science - 4/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

High-level to Assembly

Example (C)
int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

Example (compiled assembly)
i: data word 0
main: move 1 to i
t1: compare i with 100

jump to t2 if greater
push i
call fred
add 1 to i
go to t1

t2: return

School of Computing and Data Science - 5/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Assembling

Assembly language is still not directly executable
• Still text format, readable by people
• Still has names, not memory addresses

Assembler converts each assembly-language instruction into
the machine’s binary format: its machine language

Resulting object file not readable by people

School of Computing and Data Science - 6/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Assembly to Object

Example (assembly)
i: data word 0
main: move 1 to i
t1: compare i with 100

jump to t2 if greater
push i
call fred
add 1 to i
go to t1

t2: return

i:
0

main:
i
i

i
fred

i

School of Computing and Data Science - 7/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Linking

Object file still not directly executable
• Missing some parts
• Still has some names
• Mostly machine language, but not entirely

Linker collects and combines all the different parts

In our example, fred was compiled separately, and may
even have been written in a different high-level language

Result is the executable file

School of Computing and Data Science - 8/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Linking Object Code into an Executable

i:
0

main:
i
i

i
fred

i

linker

⇒

i:
0

main:
i
i

i
fred

i

fred:

School of Computing and Data Science - 9/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Loading

“Executable” file still not directly executable
• Still has some names
• Mostly machine language, but not entirely

Final step: when the program is run, the loader loads it into
memory and replaces names with addresses

School of Computing and Data Science - 10/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

A Word About Memory

For our example, we are assuming a very simple kind of
memory architecture

Memory organized as an array of bytes

Index of each byte in this array is its address

Before loading, language system does not know where in
this array the program will be placed

Loader finds an address for every piece and replaces names
with addresses

School of Computing and Data Science - 11/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Example

Executable

i: 0
main: i

i

i
fred

i

fred:

loader

⇒

Memory

x0:

x20 (main): x80
x80

x80
x60
x80

x60 (fred):

x80 (i): 0
School of Computing and Data Science - 12/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Running

After loading, the program is entirely machine language
• All names have been replaced with memory addresses

Processor begins executing its instructions, and the program
runs

School of Computing and Data Science - 13/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

The Classical Sequence

editor
===⇒ source file
compiler
====⇒ assembly-language file
assembler
=====⇒ object file
linker
===⇒ executable file
loader
===⇒ running program in memory

School of Computing and Data Science - 14/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

About Optimization

Code generated by a compiler is usually optimized to make
it faster, smaller, or both

Other optimizations may be done by the assembler, linker,
and/or loader

A misnomer: the resulting code is better, but not guaranteed
to be optimal

School of Computing and Data Science - 15/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Optimization Example

Example (Original code)
int i = 0;
while (i < 100) {

a[i++] = x*x*x;
}

Example (Improved code - loop invariant)
int i = 0;
int temp = x*x*x;
while (i < 100) {

a[i++] = temp;
}

School of Computing and Data Science - 16/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Example

Loop invariant removal is handled by most compilers

That is, most compilers generate the same efficient code
from both of the previous examples

It is often a waste of the programmer’s time to make the
code change manually

School of Computing and Data Science - 17/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems
Classical Sequence

Creating

Compiling

High-level to Assembly

Assembling

Assembly to Object

Linking

Loading

Memory

Running

Classical Sequence

About Optimization

Example

Other Optimizations

Variations

Binding times

Debuggers

Runtime
support

Other Optimizations

Some optimizations, like low-level intermediate
representation analysis, add variables

Others remove variables, remove code, add code, move code
around, etc.

All make the connection between source code and object
code more complicated

A simple question, such as “What assembly language code
was generated for this statement?” may have a complicated
answer

School of Computing and Data Science - 18/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Variations

School of Computing and Data Science - 19/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Variation: Hiding The Steps

Many language systems make it possible to do the
compile-assemble-link part with one command
Many modern compilers incorporate all the functionality of
an assembler
They generate object code directly

Example (gcc on Unix)
#compile/assemble/link
gcc main.c
#------------#
#compile
gcc main.c –S
#assemble
as main.s –o main.o
#link
ld ...

School of Computing and Data Science - 20/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Variation: Integrated Development
Environments

A single interface for editing, running and debugging
programs
Integration can add power at every step:

• Editor knows language syntax
• System may keep a database of source code (not individual

text files) and object code
• System may maintain versions, coordinate collaboration
• Rebuilding after incremental changes can be coordinated,

like Unix make but language-specific
• Debuggers can benefit (more on this soon. . . )

School of Computing and Data Science - 21/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Variation: Interpreters

To interpret a program is to carry out the steps it specifies,
without first translating all the code into a lower-level
language
Interpreters are usually much slower

• Compiling takes more time up front, but program runs at
hardware speed

• Interpreting starts right away, but each step must be
processed in software

Sounds like a simple distinction. . .

School of Computing and Data Science - 22/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Virtual Machines

A language system can produce code in a machine language
for which there is no hardware: an intermediate code

Virtual machine must be simulated in software – interpreted,
in fact

Language system may do the whole classical sequence, but
then interpret the resulting intermediate-code program

Why?

School of Computing and Data Science - 23/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Why Virtual Machines?

Cross-platform execution
• Virtual machine can be implemented in software on many

different platforms
• Simulating physical machines is harder

Heightened security
• Running program is never directly in charge
• Interpreter can intervene if the program tries to do something

it shouldn’t

School of Computing and Data Science - 24/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

The Java Virtual Machine

Java languages systems usually compile to code for a virtual
machine: the JVM

JVM language is sometimes called bytecode

Bytecode interpreter is part of almost every web browser

When you browse a page that contains a Java applet, the
browser runs the applet by interpreting its bytecode

School of Computing and Data Science - 25/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Intermediate Language Spectrum

Pure interpreter
• Intermediate language = high-level language

Tokenizing interpreter
• Intermediate language = token stream

Intermediate-code compiler
• Intermediate language = virtual machine language

Native-code compiler
• Intermediate language = physical machine language

School of Computing and Data Science - 26/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Delayed Linking

Delay linking step

Code for library functions is not included in the executable
file of the calling program

School of Computing and Data Science - 27/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Delayed Linking: Windows

Libraries of functions for delayed linking are stored in .dll
files: dynamic-link library

Many language systems share this format
Two flavors:

• Load-time dynamic linking
▶ Loader finds .dll files (which may already be in memory) and

links the program to functions it needs, just before running
• Run-time dynamic linking

▶ Running program makes explicit system calls to find .dll files
and load specific functions

School of Computing and Data Science - 28/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Delayed Linking: Unix

Libraries of functions for delayed linking are stored in .so
files: shared object

Suffix .so followed by version number

Many language systems share this format
Two flavors:

• Shared libraries
▶ Loader links the program to functions it needs before running

• Dynamically loaded libraries
▶ Running program makes explicit system calls to find library

files and load specific functions

School of Computing and Data Science - 29/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Delayed Linking: Java

JVM automatically loads and links classes when a program
uses them
Class loader does a lot of work:

• May load across Internet
• Thoroughly checks loaded code to make sure it complies

with JVM requirements

School of Computing and Data Science - 30/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Delayed Linking Advantages

Multiple programs can share a copy of library functions: one
copy on disk and in memory

Library functions can be updated independently of
programs: all programs use repaired library code next time
they run

Can avoid loading code that is never used

School of Computing and Data Science - 31/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Profiling

The classical sequence runs twice

First run of the program collects statistics: parts most
frequently executed, for example

Second compilation uses this information to help generate
code that optimizes frequently run sections

School of Computing and Data Science - 32/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations
Hiding The Steps

IDEs

Interpreters

Virtual Machines

Why Virtual Machines

JVM

Intermediate Language
Spectrum

Delayed Linking

Advantages

Profiling

Dynamic Compilation

Binding times

Debuggers

Runtime
support

Dynamic Compilation

Some compiling takes place after the program starts running
Many variations:

• Compile each function only when called
• Start by interpreting, compile only those pieces that are

called frequently
• Compile roughly at first (for instance, to intermediate code),

spend more time on frequently executed pieces (for instance,
compile to native code and optimize)

Just-in-time (JIT) compilation

School of Computing and Data Science - 33/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times
Binding

Binding Times

Language Definition
Time

Language
Implementation Time

Compile Time

Link Time

Load Time

Run Time

Late Binding, Early
Binding

Debuggers

Runtime
support

Binding times

School of Computing and Data Science - 34/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times
Binding

Binding Times

Language Definition
Time

Language
Implementation Time

Compile Time

Link Time

Load Time

Run Time

Late Binding, Early
Binding

Debuggers

Runtime
support

Binding

Binding means associating two things – specifically,
associating some property with an identifier from the
program
In our example program:

• What set of values is associated with int?
• What is the type of fred?
• What is the address of the object code for main?
• What is the value of i?

Example
int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

School of Computing and Data Science - 35/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times
Binding

Binding Times

Language Definition
Time

Language
Implementation Time

Compile Time

Link Time

Load Time

Run Time

Late Binding, Early
Binding

Debuggers

Runtime
support

Binding Times

Different bindings take place at different times
There is a standard way of describing binding times with
reference to the classical sequence:

• Language definition time
• Language implementation time
• Compile time
• Link time
• Load time
• Runtime

School of Computing and Data Science - 36/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times
Binding

Binding Times

Language Definition
Time

Language
Implementation Time

Compile Time

Link Time

Load Time

Run Time

Late Binding, Early
Binding

Debuggers

Runtime
support

Language Definition Time

Some properties are bound when the language is defined:
• Meanings of keywords: void, for, etc.

Example
int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

School of Computing and Data Science - 37/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times
Binding

Binding Times

Language Definition
Time

Language
Implementation Time

Compile Time

Link Time

Load Time

Run Time

Late Binding, Early
Binding

Debuggers

Runtime
support

Language Implementation Time

Some properties are bound when the language system is
written:

• range of values of type int in C (but in Java, these are part
of the language definition)

• implementation limitations: max identifier length, max
number of array dimensions, etc

Example
int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

School of Computing and Data Science - 38/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times
Binding

Binding Times

Language Definition
Time

Language
Implementation Time

Compile Time

Link Time

Load Time

Run Time

Late Binding, Early
Binding

Debuggers

Runtime
support

Compile Time

Some properties are bound when the program is compiled or
prepared for interpretation:

• Types of variables, in languages like C and ML that use static
typing

• Declaration that goes with a given use of a variable, in
languages that use static scoping (most languages)

Example
int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

School of Computing and Data Science - 39/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times
Binding

Binding Times

Language Definition
Time

Language
Implementation Time

Compile Time

Link Time

Load Time

Run Time

Late Binding, Early
Binding

Debuggers

Runtime
support

Link Time

Some properties are bound when separately-compiled
program parts are combined into one executable file by the
linker:

• Object code for external function names

Example
int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

School of Computing and Data Science - 40/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times
Binding

Binding Times

Language Definition
Time

Language
Implementation Time

Compile Time

Link Time

Load Time

Run Time

Late Binding, Early
Binding

Debuggers

Runtime
support

Load Time

Some properties are bound when the program is loaded into
the computer’s memory, but before it runs:

• Memory locations for code for functions
• Memory locations for static variables

Example
int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

School of Computing and Data Science - 41/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times
Binding

Binding Times

Language Definition
Time

Language
Implementation Time

Compile Time

Link Time

Load Time

Run Time

Late Binding, Early
Binding

Debuggers

Runtime
support

Run Time

Some properties are bound only when the code in question is
executed:

• Values of variables
• Types of variables, in languages like Lisp that use dynamic

typing
• Declaration that goes with a given use of a variable (in

languages that use dynamic scoping)

Also called late or dynamic binding (everything before run
time is early or static)

School of Computing and Data Science - 42/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times
Binding

Binding Times

Language Definition
Time

Language
Implementation Time

Compile Time

Link Time

Load Time

Run Time

Late Binding, Early
Binding

Debuggers

Runtime
support

Late Binding, Early Binding

The most important question about a binding time: late or
early?

• Late: generally, this is more flexible at runtime (as with
types, dynamic loading, etc.)

• Early: generally, this is faster and more secure at runtime
(less to do, less that can go wrong)

You can tell a lot about a language by looking at the binding
times

School of Computing and Data Science - 43/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times

Debuggers
Debugging Features

Debugging Information

Runtime
support

Debuggers

School of Computing and Data Science - 44/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times

Debuggers
Debugging Features

Debugging Information

Runtime
support

Debugging Features

Examine a snapshot, such as a core dump
Examine a running program on the fly

• Single stepping, breakpointing, modifying variables
Modify currently running program

• Recompile, relink, reload parts while program runs

Advanced debugging features require an integrated
development environment

School of Computing and Data Science - 45/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times

Debuggers
Debugging Features

Debugging Information

Runtime
support

Debugging Information

Where is it executing?

What is the traceback of calls leading there?

What are the values of variables?
Source-level information from machine-level code

• Variables and functions by name
• Code locations by source position

Connection between levels can be hard to maintain, for
example because of optimization

School of Computing and Data Science - 46/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times

Debuggers

Runtime
support
Runtime Support

Runtime support

School of Computing and Data Science - 47/48 - Frank Kreimendahl | kreimendahlf@wit.edu



Language
Systems

Variations

Binding times

Debuggers

Runtime
support
Runtime Support

Runtime Support

Additional code the linker includes even if the program does
not refer to it explicitly

• Startup processing: initializing the machine state
• Exception handling: reacting to exceptions
• Memory management: allocating memory, reusing it when

the program is finished with it
• Operating system interface: communicating between running

program and operating system for I/O, etc.

An important hidden player in language systems

School of Computing and Data Science - 48/48 - Frank Kreimendahl | kreimendahlf@wit.edu


	Language Systems
	Classical Sequence
	Creating
	Compiling
	High-level to Assembly
	Assembling
	Assembly to Object
	Linking
	Loading
	Memory
	Running
	Classical Sequence
	About Optimization
	Example
	Other Optimizations

	Variations
	Hiding The Steps
	IDEs
	Interpreters
	Virtual Machines
	Why Virtual Machines
	JVM
	Intermediate Language Spectrum
	Delayed Linking
	Advantages
	Profiling
	Dynamic Compilation

	Binding times
	Binding
	Binding Times
	Language Definition Time
	Language Implementation Time
	Compile Time
	Link Time
	Load Time
	Run Time
	Late Binding, Early Binding

	Debuggers
	Debugging Features
	Debugging Information

	Runtime support
	Runtime Support


