
Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Prolog Intro

School of Computing and Data Science - 1/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Language Structure

Prolog is a declarative language
A program consists of:

• A set of facts, predicates and relations that are known to
hold, and

• A set of rules, predicates and relations that are known to hold
if other predicates or relations hold

To run a Prolog program, you pose a query. The program
reports all answers to your query that are true using the rules
and facts declared in the program.

School of Computing and Data Science - 2/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Prolog Example

Example (Program)
% Facts <-- This is a comment
person_height(norbert, (6,0)).
person_height(nelly, (5,1)).
person_height(luca, (5,3)).
% Rules
taller_shorter(X, Y) :- person_height(X, (FX, _)),

person_height(Y, (FY, _)), FX > FY.
taller_shorter(X, Y) :- person_height(X, (FX, IX)),

person_height(Y, (FY, IY)),
FX =:= FY, IX > IY.

Example (Queries)
?- person_height(norbert, (F, I)). % F = 6, I = 0.
?- taller_shorter(luca, nelly). % true.
?- taller_shorter(X, nelly). % X = norbert; X = luca.

School of Computing and Data Science - 3/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Prolog Objects

Atoms:
• Composed of letters, digits, and underscores
• Start with a lowercase letter
• Examples: nelly person0 other_Item

Numbers:
• Integers: 1 -3451913
• Floating point: 1.0 -12.318 4.89e-3

Variables:
• Composed of letters, digits, and underscores
• Start with an uppercase letter or underscore
• Examples: Person _has_underscore
• Special variable(wildcard): _

School of Computing and Data Science - 4/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Terms

Simple term:
• Atom, number or variable

Complex term:
• Predicate:

▶ ⟨atom⟩(⟨term⟩[, ...])
▶ Examples: taller_shorter(X,Y)

person_height(norbert,(6,0))
• Infix relation:

▶ ⟨term⟩⟨rel⟩⟨term⟩
▶ Examples: X = pred(Y, Z) Number > 4

• Tuple:
▶ (⟨term⟩[, ...])
▶ Examples: (6,0) (Tail, Head)

• List:
▶ [⟨term⟩[, ...][|⟨list⟩]]
▶ Examples: [] [X] [_|_] [A,B|Rest]

School of Computing and Data Science - 5/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Facts and Rules

Fact:
• States what holds.
• ⟨term⟩.
• Examples: loves_teaching(norbert).
siblings(norbert,nelly).

• Can be read as a rule: ⟨term⟩ : -true.

Rule:
• States how to deduce new facts from known facts.
• ⟨head⟩ : -⟨term1⟩, . . . .
• ⟨head⟩ holds if ⟨term1⟩, . . . hold simultaneously.

Example (Rule)
taller_shorter(X, Y) :-

person_height(X, (FX, IX)),
person_height(Y, (FY, IY)), FX =:= FY, IX > IY.

School of Computing and Data Science - 6/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Exercise

Example (Program)
fun(friday).
fun(water_slide).
boring(ira_roth_conversions).
boring(cleveland).

Results?
?- fun(X).
?- fun(Cleveland).
?- boring(cleveland).

School of Computing and Data Science - 7/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Conjunction and Disjunction

Example (Conjunction between rules)
between(X, Smaller, Bigger) :-

X > Smaller, X < Bigger.
% AND operator is a comma

Example (Disjunction between rules)
outside(X, Smaller, Bigger) :-

X < Smaller; X > Bigger.
% OR operator is a semicolon

Example (Two separate rules for disjunction)
elem_list(Elem, [Elem|_]).
elem_list(Elem, [_|Tail]) :-

elem_list(Elem, Tail).

School of Computing and Data Science - 8/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Unification

A query term holds if it unifies with a term provable using
the rules and facts in the program.
Intuitively, two terms unify if the variables on both sides can
be replaced with terms to make the two terms the same.

• Every occurrence of a given variable needs to be replaced
with the same term.

Examples: (= tests whether two terms unify, \= tests whether
they don’t)

• X=X X=Y X=a(Y) a(X,y,z)=a(y,X,z) a\=b all succeed
(individually).

• X = a, X = b fails because X = a forces X to equal a and
then a \= b.

School of Computing and Data Science - 9/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Formal Definition

Two identical terms unify.

A variable unifies with any other term.
If T1 and T2 are complex terms, they unify if

• They have the same functor and arity,
• Their corresponding arguments unify, and
• The resulting variable instantiations are compatible.

If none of the above rules applies to T1 and T2, then T1 and
T2 do not unify.

School of Computing and Data Science - 10/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Unification Diagrams

X=Y, Y=a

_9341 = a

true

_9341 = a

X = _9341
Y = _9341

X=Y, X=a, Y=b

_9341 = a, _9341 = b

a = b

_9341 = a

X = _9341
Y = _9341

School of Computing and Data Science - 11/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Unification Diagrams

X=Y, Y=a

_9341 = a

true

_9341 = a

X = _9341
Y = _9341

X=Y, X=a, Y=b

_9341 = a, _9341 = b

a = b

_9341 = a

X = _9341
Y = _9341

School of Computing and Data Science - 11/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Occurs Check

What about the query X = f(X)?

Logically, this should fail because there is no (finite)
instantiation of X that makes the two sides equal.

In Prolog, this query succeeds with the answer X = f(X).

In the interest of efficiency, Prolog does not check whether a
variable occurs in its own replacement.

If you want to test for unification with occurs check, use
unify_with_occurs_check/2

Example
?- unify_with_occurs_check(X, f(X)).
false.

School of Computing and Data Science - 12/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Backtracking

To find the answers to a query, Prolog applies a depth-first search
with unification. When searching for a fact or rule that unifies
with a goal, it searches the knowledge base from top to bottom.

Example
f(a).
f(b).
f(c).
g(a).
g(b).
g(c).
h(a).
h(c).
k(X) :- f(X),

g(X), h(X).

k(Y)

f(_5137), g(_5137), h(_5137)

g(c), h(c)

h(c)

true

g(b), h(b)

h(b)

g(a), h(a)

h(a)

true

_5137 = a _5137 = b _5137 = c

Y = _5137

School of Computing and Data Science - 13/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Backtracking

To find the answers to a query, Prolog applies a depth-first search
with unification. When searching for a fact or rule that unifies
with a goal, it searches the knowledge base from top to bottom.

Example
f(a).
f(b).
f(c).
g(a).
g(b).
g(c).
h(a).
h(c).
k(X) :- f(X),

g(X), h(X).

k(Y)

f(_5137), g(_5137), h(_5137)

g(c), h(c)

h(c)

true

g(b), h(b)

h(b)

g(a), h(a)

h(a)

true

_5137 = a _5137 = b _5137 = c

Y = _5137

School of Computing and Data Science - 13/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Exercise

Program
queen(anne).
queen(victoria).
king(george).
king(edward).

royal_couple(X,Y) :- queen(X), king(Y).

Results?
?- king(X).

?- royal_couple(X, george).
?- royal_couple(X,Y).

School of Computing and Data Science - 14/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro
Language Structure

Prolog Example

Prolog Objects

Terms

Facts and Rules

Exercise

Conjunction and
Disjunction

Unification

Occurs Check

Backtracking

Exercise

Lists

Using Prolog

Lists

Sequences and collections are represented as lists.
Since list elements can themselves be lists, we can use lists
to represent complicated data structures such as trees (even
though they are often better represented as deeply nested
complex terms).

• Empty list: []
• Head and tail: [a|[b,c,d]] = [a,b,c,d] [a|[]] =
[a]

• Multiple heads: [a,b|[c,d]] = [a,b,c,d]

School of Computing and Data Science - 15/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Using Prolog

School of Computing and Data Science - 16/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Control Flow

The notion of “control flow” is much weaker in Prolog than
even in a functional language because we are (mostly) not
concerned with the order in which the Prolog interpreter
does things.

What we need is a way to build up arbitrarily complex
relations using recursion.

Follow tail recursion patterns with an accumulator variable
because there is not a concept of a returned value.

School of Computing and Data Science - 17/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Recursion

Example (Summing a list of integers)
sum([], 0).
sum([X|Xs], Sum) :-

sum(Xs, Sum1), Sum is Sum1 + X.

Example (Summing a list of integers (better))
sum([], 0).
sum([X|Xs], Sum) :-

Sum #= Sum1 + X, sum(Xs, Sum1).
% finite domain constraint... not in scope of class

School of Computing and Data Science - 18/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Mapping a Predicate Over a List

Example
odd(X) :- 1 is X mod 2.

?- maplist(odd,[1,3,5]).
true.
?- maplist(odd,[1,2,3]).
false.

?- maplist(<,[1,3,5],[2,7,8]).
true.
?- maplist(<,[1,3,9],[2,7,8]).
false.

add(X,Y,Sum) :- Sum is X+Y.
?- maplist(add,[1,3,5],[4,8,9],Sums).
Sums = [5,11,14].

School of Computing and Data Science - 19/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Built-In Predicates

Primitives:
• true, false
• fail (is the same as false)

Unification:
• = (arguments unify), \= (arguments do not unify)

Arithmetic and numeric comparisons: (Use with caution.)
• +,-,*,/,//
• <, >, >=, =<, =:=, =\=
• 5 \= 2+3 but X is 2+3, 5 = X

Lots more

School of Computing and Data Science - 20/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Goal Ordering

Example (Given)
f(e). g(a). g(b). g(c). g(d). g(e).

Example (Two equivalent rules)
h1(X) :- f(X), g(X).
h2(X) :- g(X), f(X).

Is one more efficient than the other?
• h1 instantiates X = e and then succeeds because g(e) holds.
• h2 instantiates X = a, X = b, ... and fails on all

instantiations except X = e.

School of Computing and Data Science - 21/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Goal Ordering with Recursion

Example (Given)
parent(anne,bridget). parent(bridget,caroline).
parent(caroline,donna). parent(donna,emily).

Example (Two equivalent relationships)
descend1(X,Y)

:- parent(X,Z), descend1(Z,Y).
descend1(X,Y) :- parent(X,Y).
descend2(X,Y)

:- descend2(Z,Y), parent(X,Z).
descend2(X,Y) :- parent(X,Y).

descend1(anne,bridget) succeeds.

descend2(anne,bridget) does not terminate.

School of Computing and Data Science - 22/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Exercise 1

Example (Given)
parent(anne,bridget). parent(bridget,caroline).
parent(caroline,donna). parent(donna,emily).

Write a grandparent/2 predicate that is true if the first argument
is a grandparent of the second.

School of Computing and Data Science - 23/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Exercise 2

Write an a2b/2 predicate that is true if the first argument is a list
of a’s, and the second argument is an equal-length list of b’s.

Example (Results)
?- a2b([a,a,a,a],[b,b,b,b]).
true
?- a2b([a,a,a,a],[b,b,b]).
false
?- a2b([a,c,a,a],[b,b,b,t]).
false

School of Computing and Data Science - 24/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Cut

! (read “cut”) is a predicate that always succeeds, but with a
side effect:

• It commits Prolog to all choices (unification of variables)
that were made since the parent goal was unified with the
left-hand side of the rule.

• This includes the choice to use this particular rule.

School of Computing and Data Science - 25/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Example with no cut

Example
a(1). b(1). b(2). c(1). c(2). d(2). e(2). f(3).
p(X):-a(X). p(X):-b(X), c(X), d(X), e(X). p(X):-f(X).

?-
p(X).

X = 1;

X = 2;

X = 3.

p(X)

f(_3)

true

_3 = 3

b(_2), c(_2), d(_2), e(_2)

c(2), d(2), e(2)

d(2), e(2)

e(2)

true

c(1), d(1), e(1)

d(1), e(1)

_2 = 1 _2 = 2

a(_1)

true

_1 = 1

X = _1 X = _2 X = _3

School of Computing and Data Science - 26/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Example with no cut

Example
a(1). b(1). b(2). c(1). c(2). d(2). e(2). f(3).
p(X):-a(X). p(X):-b(X), c(X), d(X), e(X). p(X):-f(X).

?-
p(X).

X = 1;

X = 2;

X = 3.

p(X)

f(_3)

true

_3 = 3

b(_2), c(_2), d(_2), e(_2)

c(2), d(2), e(2)

d(2), e(2)

e(2)

true

c(1), d(1), e(1)

d(1), e(1)

_2 = 1 _2 = 2

a(_1)

true

_1 = 1

X = _1 X = _2 X = _3

School of Computing and Data Science - 26/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Example with no cut

Example
a(1). b(1). b(2). c(1). c(2). d(2). e(2). f(3).
p(X):-a(X). p(X):-b(X), c(X), d(X), e(X). p(X):-f(X).

?-
p(X).

X = 1;

X = 2;

X = 3.

p(X)

f(_3)

true

_3 = 3

b(_2), c(_2), d(_2), e(_2)

c(2), d(2), e(2)

d(2), e(2)

e(2)

true

c(1), d(1), e(1)

d(1), e(1)

_2 = 1 _2 = 2

a(_1)

true

_1 = 1

X = _1 X = _2 X = _3

School of Computing and Data Science - 26/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Example with no cut

Example
a(1). b(1). b(2). c(1). c(2). d(2). e(2). f(3).
p(X):-a(X). p(X):-b(X), c(X), d(X), e(X). p(X):-f(X).

?-
p(X).

X = 1;

X = 2;

X = 3.

p(X)

f(_3)

true

_3 = 3

b(_2), c(_2), d(_2), e(_2)

c(2), d(2), e(2)

d(2), e(2)

e(2)

true

c(1), d(1), e(1)

d(1), e(1)

_2 = 1 _2 = 2

a(_1)

true

_1 = 1

X = _1 X = _2 X = _3

School of Computing and Data Science - 26/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Example with cut

Example
a(1). b(1). b(2). c(1). c(2). d(2). e(2). f(3).
p(X):-a(X). p(X):-b(X), c(X), !, d(X), e(X). p(X):-f(X).

?-
p(X).

X = 1;

false.

p(X)

f(_3)b(_2), c(_2), !, d(_2), e(_2)

c(2), !, d(2), e(2)c(1), !, d(1), e(1)

!, d(1), e(1)

d(1), e(1)

_2 = 1 _2 = 2

a(_1)

true

_1 = 1

X = _1 X = _2 X = _3

School of Computing and Data Science - 27/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Example with cut

Example
a(1). b(1). b(2). c(1). c(2). d(2). e(2). f(3).
p(X):-a(X). p(X):-b(X), c(X), !, d(X), e(X). p(X):-f(X).

?-
p(X).

X = 1;

false.

p(X)

f(_3)b(_2), c(_2), !, d(_2), e(_2)

c(2), !, d(2), e(2)c(1), !, d(1), e(1)

!, d(1), e(1)

d(1), e(1)

_2 = 1 _2 = 2

a(_1)

true

_1 = 1

X = _1 X = _2 X = _3

School of Computing and Data Science - 27/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Example with cut

Example
a(1). b(1). b(2). c(1). c(2). d(2). e(2). f(3).
p(X):-a(X). p(X):-b(X), c(X), !, d(X), e(X). p(X):-f(X).

?-
p(X).

X = 1;

false.

p(X)

f(_3)b(_2), c(_2), !, d(_2), e(_2)

c(2), !, d(2), e(2)c(1), !, d(1), e(1)

!, d(1), e(1)

d(1), e(1)

_2 = 1 _2 = 2

a(_1)

true

_1 = 1

X = _1 X = _2 X = _3

School of Computing and Data Science - 27/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Example with cut

Example
a(1). b(1). b(2). c(1). c(2). d(2). e(2). f(3).
p(X):-a(X). p(X):-b(X), c(X), !, d(X), e(X). p(X):-f(X).

?-
p(X).

X = 1;

false.

p(X)

f(_3)b(_2), c(_2), !, d(_2), e(_2)

c(2), !, d(2), e(2)c(1), !, d(1), e(1)

!, d(1), e(1)

d(1), e(1)

_2 = 1 _2 = 2

a(_1)

true

_1 = 1

X = _1 X = _2 X = _3

School of Computing and Data Science - 27/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Second Cut Example

In the q branch of the tree, X is unified with 1 at the cut, so results
like X = 2, Y = 4 are no longer possible.

Example
p(X,Y) :- q(X,Y).
p(3,6).
q(X,Y) :- a(X), !, b(Y).
q(4,7).
a(1). a(2).
b(4). b(5).

?- p(X,Y).
X = 1, Y = 4 ;
X = 1, Y = 5 ;
X = 3, Y = 6.

School of Computing and Data Science - 28/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Exercise

Example (Given)
teaches(dr_fred, history). studies(alice, english).
teaches(dr_fred, english). studies(angus, english).
teaches(dr_fred, drama). studies(amelia, drama).
teaches(dr_fiona, physics). studies(alex, physics).

Results?
?- teaches(dr_fred, Course), !, studies(Student, Course).
?- teaches(dr_fred, Course), studies(Student, Course), !.
?- !, teaches(dr_fred, Course), studies(Student, Course).

School of Computing and Data Science - 29/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Third Cut Example

Example (A predicate to compute the maximum)
max(X,Y,X) :- X >= Y.
max(X,Y,Y) :- X < Y.

max(4,3,Z)

4 < 34 >= 3

true

X = 4, Y = 3, Z = 4 X = 4, Y = 3, Z = 3

Correct but inefficient – branch truths are mutually exclusive.

School of Computing and Data Science - 30/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Third Cut Example

Example (A predicate to compute the maximum)
max(X,Y,X) :- X >= Y, !.
max(X,Y,Y) :- X < Y.

max(4,3,Z)

4 < 34 >= 3

!

true

X = 4, Y = 3, Z = 4 X = 4, Y = 3, Z = 3

School of Computing and Data Science - 31/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Negation

In general, Prolog has no notion of a predicate not being
true! It can only decide whether it can prove the predicate
using the information in the database.
This is called “negation as failure”.
It is useful to be able to ask the question: “Are you unable to
prove this predicate?” (Is this predicate false?)

Example
neg(P) :- P, !, fail.
neg(_).
Example:
?- neg(true).
false.
?- neg(false).
true.

Prolog has a built-in
unary operator \+ that
does exactly what neg
does. Thus, these two
queries become \+
true. and \+ false.

School of Computing and Data Science - 32/33 - Frank Kreimendahl | kreimendahlf@wit.edu



Prolog Intro

Using Prolog
Control Flow

Recursion

Mapping a Predicate

Built-In Predicates

Goal Ordering

Exercises

Cut

Cut Examples

Negation

Once Predicate

Once Predicate

Sometimes, we know that a predicate can match only once
or we never need more than one solution.

In these cases, we would like to prevent Prolog from
searching for additional solutions, in the interest of
efficiency.
once(P):

• Fails if P fails.
• Succeeds if P succeeds but finds only one solution.

Example
a(1). a(2).
?- a(X).
X = 1 ;
X = 2.

Example
a(1). a(2).
?- once(a(X)).
X = 1.

School of Computing and Data Science - 33/33 - Frank Kreimendahl | kreimendahlf@wit.edu


	Prolog Intro
	Language Structure
	Prolog Example
	Prolog Objects
	Terms
	Facts and Rules
	Exercise
	Conjunction and Disjunction
	Unification
	Occurs Check
	Backtracking
	Exercise
	Lists

	Using Prolog
	Control Flow
	Recursion
	Mapping a Predicate
	Built-In Predicates
	Goal Ordering
	Exercises
	Cut
	Cut Examples
	Negation
	Once Predicate


