
Intro to Programming Languages

Professor Frank Kreimendahl

School of Computing and Data Science

Wentworth Institute of Technology

May 12, 2023



Programming
Languages
Overview

Motivation

Conclusion

Programming Languages

School of Computing and Data Science - 2/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages
Overview

Motivation

Conclusion

Programming Languages Overview

Purpose:
• Discover language design successes and failures.
• Discover how languages are designed and implemented.

Several real languages will be programmed but:
• Course is not intended to teach programming
• Experience the key programming language elements that are

common to or distinguish two classes of languages.
• Assume you can already program in at least one object

oriented language that uses Java style syntax.
• C# used as a recent object oriented, threaded and networking

language.
• F# used as a very high-level language mainly for studying

and implementing interpretive language.

School of Computing and Data Science - 3/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages
Overview

Motivation

Conclusion

Overview, continued

A programming language is the problem-solving tool that
computer science uses for human expression of computing
solutions.
• Ideas are expressed in a language.

The Sapir-Whorf linguistic theory states that the structure of
language defines the boundaries of thought.
• New ideas often require new language, for example: algebra.

A given language can impede or facilitate certain modes of
thought.
All programming languages are capable of solving any
computable problem – computer languages are equivalent.
• No programming language can prevent a problem solution.
• A given language can subtly influence the class of solutions

examined and the quality of a program.

School of Computing and Data Science - 4/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

Connection

Other Connections

Conclusion Motivation

School of Computing and Data Science - 5/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Imperative

Functional

Logical

OO

Strengths

Families

Forth

APL

Controversies

Evolution

Connection

Other Connections

Conclusion

The Amazing Variety

There are very many, very different languages

A list that used to be posted occasionally on
comp.lang.misc had over 2300 published languages in
1995
Often grouped into four families:
• Imperative
• Functional
• Logic
• Object-oriented

School of Computing and Data Science - 6/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Imperative

Functional

Logical

OO

Strengths

Families

Forth

APL

Controversies

Evolution

Connection

Other Connections

Conclusion

Imperative Languages

Example (a factorial function in C)
int fact(int n) {

int sofar = 1;
while (n>0) sofar *= n--;
return sofar;

}

Hallmarks of imperative languages:
• Assignment and side-effects
• Iteration
• Order of execution is critical

School of Computing and Data Science - 7/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Imperative

Functional

Logical

OO

Strengths

Families

Forth

APL

Controversies

Evolution

Connection

Other Connections

Conclusion

Functional Languages

Example (a factorial function in ML)
let rec factorial x =

if x <= 0 then 1 else x * factorial (x-1)

Hallmarks of functional languages:
• Single-valued variables
• Heavy use of recursion
• Functions are first-class citizens, can be used as parameters,

function results, etc.
• Minimal use of assignments and side-effects

School of Computing and Data Science - 8/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Imperative

Functional

Logical

OO

Strengths

Families

Forth

APL

Controversies

Evolution

Connection

Other Connections

Conclusion

Another Functional Language

Example (a factorial function in Lisp)
(defun fact (x)

(if (<= x 0) 1 (* x (fact (- x 1)))))

Looks very different from ML
• Fully-parenthesized, prefix syntax

But ML and Lisp are closely related
• Single-valued variables: no assignment
• Heavy use of recursion: no iteration

School of Computing and Data Science - 9/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Imperative

Functional

Logical

OO

Strengths

Families

Forth

APL

Controversies

Evolution

Connection

Other Connections

Conclusion

Logic Languages

Example (a factorial function in Prolog)
fact(X,1) :-

X =:= 1.
fact(X,Fact) :-

X > 1,
NewX is X - 1,
fact(NewX,NF),
Fact is X * NF.

Hallmarks of logical languages:
• Program expressed as rules in formal logic
• Execution attempts to prove a result based upon rules

School of Computing and Data Science - 10/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Imperative

Functional

Logical

OO

Strengths

Families

Forth

APL

Controversies

Evolution

Connection

Other Connections

Conclusion

Object-Oriented Languages

Example (a factorial function object in C#)
public class Int {

private int n;
public Int(int n) { this.n = n; }
public int N
{

get { return this.n; }
set { this.n = value; }

}
public Int getFact()
{ return new Int(fact(n)); }
private int fact(int n)

{
if (n <= 0) return 1;
else return n * fact(n - 1);

}
}

School of Computing and Data Science - 11/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Imperative

Functional

Logical

OO

Strengths

Families

Forth

APL

Controversies

Evolution

Connection

Other Connections

Conclusion

Object-Oriented Languages

Hallmarks of object-oriented languages:
• Usually imperative, plus. . .
• Constructs to help programmers use “objects” – little

bundles of data that know how to do things to themselves

School of Computing and Data Science - 12/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Imperative

Functional

Logical

OO

Strengths

Families

Forth

APL

Controversies

Evolution

Connection

Other Connections

Conclusion

Strengths and Weaknesses

The different language groups show an advantage on
different kinds of problems

Decide for yourself at the end of the semester, after
experimenting with them
For now, one comment: don’t jump to conclusions based on
factorial!
• Functional languages do well on such functions
• Imperative languages, a bit less well
• Logic languages, considerably less well
• Object-oriented languages need larger examples

School of Computing and Data Science - 13/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Imperative

Functional

Logical

OO

Strengths

Families

Forth

APL

Controversies

Evolution

Connection

Other Connections

Conclusion

About Those Families

There are many other language family terms (not exhaustive
and sometimes overlapping)
• Applicative, concurrent, constraint, declarative, definitional,

procedural, scripting, single-assignment, . . .

Some languages straddle families

Others are so unique that assigning them to a family is
pointless

School of Computing and Data Science - 14/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Imperative

Functional

Logical

OO

Strengths

Families

Forth

APL

Controversies

Evolution

Connection

Other Connections

Conclusion

Example: Forth Factorial

Example (a factorial function in Forth)
: FACTORIAL

1 SWAP BEGIN ?DUP WHILE TUCK * SWAP 1- REPEAT ;

A stack-oriented language

Postscript language used by printers is similar

Could be called imperative, but has little in common with
most imperative languages

School of Computing and Data Science - 15/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Imperative

Functional

Logical

OO

Strengths

Families

Forth

APL

Controversies

Evolution

Connection

Other Connections

Conclusion

Example: APL Factorial

Example (a factorial function in APL)
FACTORIAL←{×/ιX}

An APL expression that computes X’s factorial

Expands X into a vector of the integers 1..X, then multiplies
them all together

(You would not really do it that way in APL, since there is a
predefined factorial operator: !X)

Could be called functional, but has little in common with
most functional languages

School of Computing and Data Science - 16/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Partisans

Standards

Definitions

Evolution

Connection

Other Connections

Conclusion

The Odd Controversies

Programming languages are the subject of many heated
debates:
• Partisan arguments
• Language standards
• Fundamental definitions

School of Computing and Data Science - 17/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Partisans

Standards

Definitions

Evolution

Connection

Other Connections

Conclusion

Language Partisans

There is a lot of argument about the relative merits of
different languages

Every language has partisans, who praise it in extreme terms
and defend it against all detractors

To experience some of this, explore newsgroups:
comp.lang.* or /r/programming

School of Computing and Data Science - 18/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Partisans

Standards

Definitions

Evolution

Connection

Other Connections

Conclusion

Language Standards

The documents that define language standards are often
drafted by international committees

Can be a slow, complicated and rancorous process

C++ 98, 03, 07/TR1, 11, 14, 17, 20

School of Computing and Data Science - 19/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Partisans

Standards

Definitions

Evolution

Connection

Other Connections

Conclusion

Basic Definitions

Some terms refer to fuzzy concepts: all those language
family names, for example
No problem, just remember they are fuzzy
• Bad: Is X really an object-oriented language?
• Good: What aspects of X support an object-oriented style of

programming?

Some crisp concepts have conflicting terminology: one
person’s argument is another person’s actual parameter

School of Computing and Data Science - 20/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

New Languages

Java

Algol

Dialects

Fortran

Connection

Other Connections

Conclusion

The Intriguing Evolution

Programming languages are evolving rapidly
• New languages are being invented
• Old ones are developing new dialects

School of Computing and Data Science - 21/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

New Languages

Java

Algol

Dialects

Fortran

Connection

Other Connections

Conclusion

New Languages

A clean slate: no need to maintain compatibility with an
existing body of code

But never entirely new any more: always using ideas from
earlier designs

Some become widely used, others do not

Whether widely used or not, they can serve as a source of
ideas for the next generation

School of Computing and Data Science - 22/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

New Languages

Java

Algol

Dialects

Fortran

Connection

Other Connections

Conclusion

Widely Used: Java

Quick rise to popularity since 1995 release

C# uses many ideas from Java and C++, plus some from
Mesa, Modula, and other languages

C++ uses most of C and extends it with ideas from Simula
67, Ada, Clu, ML and Algol 68

C was derived from B, which was derived from BCPL,
which was derived from CPL, which was derived from Algol
60

School of Computing and Data Science - 23/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

New Languages

Java

Algol

Dialects

Fortran

Connection

Other Connections

Conclusion

Not Widely Used: Algol

One of the earliest languages: Algol 58, Algol 60, Algol 68

Never widely used
Introduced many ideas that were used in later languages,
including
• Block structure and scope
• Recursive functions
• Parameter passing by value

School of Computing and Data Science - 24/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

New Languages

Java

Algol

Dialects

Fortran

Connection

Other Connections

Conclusion

Dialects

Experience with languages reveals their design weaknesses
and leads to new dialects

New ideas pass into new dialects of old languages

School of Computing and Data Science - 25/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

New Languages

Java

Algol

Dialects

Fortran

Connection

Other Connections

Conclusion

Some Dialects Of Fortran

Original Fortran, IBM
Major standards:
• Fortran II
• Fortran III
• Fortran IV
• Fortran 66
• Fortran 77
• Fortran 90
• Fortran 95
• Fortran 2003
• Fortran 2008
• Fortran 2018

Deviations in each
implementation
Parallel processing
• HPF
• Fortran M
• Vienna Fortran

And many more. . .

School of Computing and Data Science - 26/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

Connection

Influences

Fighting

Imperative ML

Non-OO C#

Functional Pascal

Influences

Other Connections

Conclusion

The Connection To Programming Practice

Languages influence programming practice
• A language favors a particular programming style – a

particular approach to algorithmic problem-solving

Programming experience influences language design

School of Computing and Data Science - 27/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

Connection

Influences

Fighting

Imperative ML

Non-OO C#

Functional Pascal

Influences

Other Connections

Conclusion

Language Influences Programming Practice

Languages often strongly favor a particular style of
programming
• Object-oriented languages: a style making heavy use of

objects
• Functional languages: a style using many small

side-effect-free functions
• Logic languages: a style using searches in a logically-defined

problem space

School of Computing and Data Science - 28/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

Connection

Influences

Fighting

Imperative ML

Non-OO C#

Functional Pascal

Influences

Other Connections

Conclusion

Fighting the Language

Languages favor a particular style, but do not force the
programmer to follow it

It is always possible to write in a style not favored by the
language
It is not usually a good idea. . .
• C++ is not good for logic programming.
• Prolog is not good for systems programming.

School of Computing and Data Science - 29/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

Connection

Influences

Fighting

Imperative ML

Non-OO C#

Functional Pascal

Influences

Other Connections

Conclusion

Imperative ML

ML makes it hard to use assignment and side-effects. But it is
still possible:

Example
fun fact n =

let
val i = ref 1;
val xn = ref n

in
while !xn>1 do (

i := !i * !xn;
xn := !xn - 1

);
!i

end;

School of Computing and Data Science - 30/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

Connection

Influences

Fighting

Imperative ML

Non-OO C#

Functional Pascal

Influences

Other Connections

Conclusion

Non-object-oriented C#

C#, more than C++, tries to encourage you to adopt an
object-oriented mode. But you can still put your whole program
into static methods of a single class:

Example
class Fubar {

public static void Main (string args[]) {
// whole program here!

}
}

School of Computing and Data Science - 31/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

Connection

Influences

Fighting

Imperative ML

Non-OO C#

Functional Pascal

Influences

Other Connections

Conclusion

Functional Pascal

Any imperative language that supports recursion can be used as a
functional language:

Example
function ForLoop(Low, High: Integer): Boolean;

begin
if Low <= High then

begin
{for-loop body here}
ForLoop := ForLoop(Low+1, High)

end
else

ForLoop := True
end;

School of Computing and Data Science - 32/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

Connection

Influences

Fighting

Imperative ML

Non-OO C#

Functional Pascal

Influences

Other Connections

Conclusion

Programming Influences Language Design

Corrections to design problems make future dialects, as
already noted
Programming styles can emerge before there is a language
that supports them
• Programming with objects predates object-oriented

languages
• Automated theorem proving predates logic languages

School of Computing and Data Science - 33/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

Connection

Other Connections

Computer
Architecture

Theory

Turing Equivalence

Conclusion

Computer Architecture

Language evolution drives and is driven by hardware
evolution:
• Call-stack support – languages with recursion
• Parallel architectures – parallel languages
• Internet – Java

School of Computing and Data Science - 34/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

Connection

Other Connections

Computer
Architecture

Theory

Turing Equivalence

Conclusion

Theory of Formal Languages

Theory of formal languages is a core mathematical area of
computer science
• Regular grammars, finite-state automata – lexical structure of

programming languages, scanner in a compiler
• Context-free grammars, pushdown automata – phrase-level

structure of programming languages, parser in a compiler
• Turing machines – Turing-equivalence of programming

languages

School of Computing and Data Science - 35/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation
Variety

Controversies

Evolution

Connection

Other Connections

Computer
Architecture

Theory

Turing Equivalence

Conclusion

Turing Equivalence

Languages have different strengths, but fundamentally they
all have the same power
• {problems solvable in Java}

= {problems solvable in Fortran}
= . . .

And all have the same power as various mathematical
models of computation
• {problems solvable by Turing machine}

= {problems solvable by lambda calculus}
= . . .

Church-Turing thesis: this is what “computability” means

School of Computing and Data Science - 36/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation

Conclusion

Conclusion

School of Computing and Data Science - 37/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Programming
Languages

Motivation

Conclusion

Conclusion

Why programming languages are worth studying (and this
course worth taking):
• The amazing variety
• The odd controversies
• The intriguing evolution
• The connection to programming practice
• The many other connections

Plus. . . there is the fun of learning three new languages!

School of Computing and Data Science - 38/38 - Frank Kreimendahl | kreimendahlf@wit.edu


	Programming Languages
	Overview

	Motivation
	Variety
	Controversies
	Evolution
	Connection
	Other Connections

	Conclusion

