W
&“T 0 Q%&Pﬁogramming Languages

@ Professor Frank Kreimendahl

7

hool of Computing and Data Science

@
~
O
>

Wentworth Institute of Technology

May 12, 2023




Programming
Languages

Overvie
Motivation

1clusion

Programming Languages

School of Computing and Data Science -2/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Programming Languages Overview

m Purpose:

Motivation

® Discover language design successes and failures.
o ® Discover how languages are designed and implemented.

m Several real languages will be programmed but:

® Course is not intended to teach programming

® Experience the key programming language elements that are
common to or distinguish two classes of languages.

® Assume you can already program in at least one object
oriented language that uses Java style syntax.

® C# used as a recent object oriented, threaded and networking
language.

® F# used as a very high-level language mainly for studying
and implementing interpretive language.

School of Computing and Data Science -3/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Overview, continued

m A programming language is the problem-solving tool that
computer science uses for human expression of computing
solutions.

Motivation

Conclusion

® Ideas are expressed in a language.

m The Sapir-Whorf linguistic theory states that the structure of
language defines the boundaries of thought.

® New ideas often require new language, for example: algebra.

m A given language can impede or facilitate certain modes of
thought.
m All programming languages are capable of solving any
computable problem — computer languages are equivalent.
® No programming language can prevent a problem solution.
® A given language can subtly influence the class of solutions
examined and the quality of a program.

School of Computing and Data Science -4/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4

mming
Languages

Motivation

Controversie
Evolutior
Connection

Other Connection:

Conclusion MOtiVatiOn

School of Computing and Data Science Frank Kreimendahl | kreimendahlf@wit.edu



4 The Amazing Variety

m There are very many, very different languages

m A list that used to be posted occasionally on

comp.lang.misc had over 2300 published languages in
1995

m Often grouped into four families:
® Imperative
® Functional
® Logic
® QObject-oriented

Conclusion

School of Computing and Data Science - 6/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Imperative Languages

Example (a factorial function in C)

int fact(int n) {
int sofar = 1;
while (n>0) sofar *= n--;
return sofar;

3

m Hallmarks of imperative languages:
® Assignment and side-effects
® [teration
® Order of execution is critical

Conclusion

School of Computing and Data Science -7/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Functional Languages

Motivation

Example (a factorial function in ML)

Imperative

let rec factorial x =
if x <= 0 then 1 else x * factorial (x-1)

m Hallmarks of functional languages:
® Single-valued variables
® Heavy use of recursion
® Functions are first-class citizens, can be used as parameters,
function results, etc.
® Minimal use of assignments and side-effects

Conclusion

School of Computing and Data Science -8/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Another Functional Language

Example (a factorial function in Lisp)

(defun fact (x)
(if (k=x0) 1 (* x (fact (- x 1)))))

m Looks very different from ML
® Fully-parenthesized, prefix syntax
m But ML and Lisp are closely related

¢ Single-valued variables: no assignment
® Heavy use of recursion: no iteration

Conclusion

School of Computing and Data Science -9/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Logic Languages

Example (a factorial function in Prolog)

fact(X,1) :-
X =:= 1.
fact(X,Fact) :-
X > 1,
NewX is X - 1,
fact (NewX,NF),
Fact is X * NF. )

Conclusion

m Hallmarks of logical languages:

® Program expressed as rules in formal logic
® Execution attempts to prove a result based upon rules

School of Computing and Data Science -10/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Object-Oriented Languages

Example (a factorial function object in C#)

Motivation public class Int {

“&“7 private int n;

Function public Int(int n) { this.n = n; }
— public int N

{

mming

get { return this.n; }
set { this.n = value; }
}
public Int getFact()
{ return new Int(fact(n)); }
private int fact(int n)

{

Other Connections

Conclusion

if (n <= 0) return 1;
else return n * fact(n - 1);

School of Computing and Data Science -11/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Object-Oriented Languages

m Hallmarks of object-oriented languages:

® Usually imperative, plus. ..
® Constructs to help programmers use “objects” — little
bundles of data that know how to do things to themselves

Conclusion

School of Computing and Data Science -12/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Strengths and Weaknesses

m The different language groups show an advantage on
different kinds of problems

m Decide for yourself at the end of the semester, after
experimenting with them
m For now, one comment: don’t jump to conclusions based on
factorial!
® Functional languages do well on such functions
® Imperative languages, a bit less well
® Logic languages, considerably less well
® Object-oriented languages need larger examples

Conclusion

School of Computing and Data Science -13/38 - Frank Kreimendahl | kreimendahlf@wit.edu



About Those Families

Motivation

Imperative

m There are many other language family terms (not exhaustive
and sometimes overlapping)

® Applicative, concurrent, constraint, declarative, definitional,
procedural, scripting, single-assignment, . ..

m Some languages straddle families

m Others are so unique that assigning them to a family is
Conclusion pointless

School of Computing and Data Science - 14/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Example: Forth Factorial

Example (a factorial function in Forth)

: FACTORIAL
1 SWAP BEGIN 7DUP WHILE TUCK * SWAP 1- REPEAT ;

m A stack-oriented language
m Postscript language used by printers is similar

Conclusion m Could be called imperative, but has little in common with
most imperative languages

School of Computing and Data Science - 15/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Example: APL Factorial

Example (a factorial function in APL)
FACTORIAL+ {x /1X}

m An APL expression that computes X’s factorial

m Expands X into a vector of the integers 1..X, then multiplies
them all together

m (You would not really do it that way in APL, since there is a

Cordesion predefined factorial operator: !X)

m Could be called functional, but has little in common with
most functional languages

School of Computing and Data Science - 16/38 - Frank Kreimendahl | kreimendahlf@wit.edu



The Odd Controversies

m Programming languages are the subject of many heated
debates:
® Partisan arguments
® Language standards
® Fundamental definitions

Conclusion

School of Computing and Data Science -17/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Language Partisans

mming

Motivation

m There is a lot of argument about the relative merits of
different languages

N m Every language has partisans, who praise it in extreme terms
Conclusion and defend it against all detractors

m To experience some of this, explore newsgroups:
comp.lang.* or /r/programming

School of Computing and Data Science - 18/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Language Standards

m The documents that define language standards are often
drafted by international committees

Conclusion m Can be a slow, complicated and rancorous process
m C++98,03,07/TR1, 11, 14, 17, 20

School of Computing and Data Science -19/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4

Basic Definitions

mming
eS

Motivation
Controversie

m Some terms refer to fuzzy concepts: all those language
family names, for example

C

Oth

: m No problem, just remember they are fuzzy
Conclusion

® Bad: Is X really an object-oriented language?

® Good: What aspects of X support an object-oriented style of
programming?

m Some crisp concepts have conflicting terminology: one
person’s argument is another person’s actual parameter

School of Computing and Data Science -20/38 -

Frank Kreimendahl | kreimendahlf@wit.edu



4 The Intriguing Evolution

Motivation

ariet
Controversie
Evolution

New Language:
J

T m Programming languages are evolving rapidly

e ® New languages are being invented
o ® Old ones are developing new dialects

Conclusion

School of Computing and Data Science -21/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 New Languages

mming
eS

Motivation
o m A clean slate: no need to maintain compatibility with an
rr— existing body of code

D m But never entirely new any more: always using ideas from

Fortran . .
earlier designs
e m Some become widely used, others do not

m Whether widely used or not, they can serve as a source of
ideas for the next generation

School of Computing and Data Science -22/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Widely Used: Java

m Quick rise to popularity since 1995 release

m C# uses many ideas from Java and C++, plus some from
Mesa, Modula, and other languages

m C++ uses most of C and extends it with ideas from Simula
67, Ada, Clu, ML and Algol 68

m C was derived from B, which was derived from BCPL,
which was derived from CPL, which was derived from Algol
60

Conclusion

School of Computing and Data Science -23/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Not Widely Used: Algol

m One of the earliest languages: Algol 58, Algol 60, Algol 68

m Never widely used

m Introduced many ideas that were used in later languages,
) including

Conclusion ® Block structure and scope

® Recursive functions

® Parameter passing by value

School of Computing and Data Science -24/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Dialects

m Experience with languages reveals their design weaknesses
and leads to new dialects

m New ideas pass into new dialects of old languages

Conclusion

School of Computing and Data Science -25/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Some Dialects Of Fortran

m Original Fortran, IBM
m Major standards:

e Fortran II m Deviations in each
e Fortran 111 implementation
¢ Fortran IV m Parallel processing
® Fortran 66 e HPF

Conclusion ¢ FOrtran 77 o Fortran M
¢ Fortran 90 ® Vienna Fortran
® Fortran 95
e Fortran 2003 ® And many more. ..
® Fortran 2008
® Fortran 2018

School of Computing and Data Science -26/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 The Connection To Programming Practice

m Languages influence programming practice
® A language favors a particular programming style — a
particular approach to algorithmic problem-solving

m Programming experience influences language design

Conclusion

School of Computing and Data Science -27/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Language Influences Programming Practice

m Languages often strongly favor a particular style of
programming
® QObject-oriented languages: a style making heavy use of
objects
® Functional languages: a style using many small
side-effect-free functions
Conclusion ® Logic languages: a style using searches in a logically-defined
problem space

School of Computing and Data Science -28/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Fighting the Language

m Languages favor a particular style, but do not force the
programmer to follow it

m It is always possible to write in a style not favored by the
language

m It is not usually a good idea. ..

® C++ is not good for logic programming.
® Prolog is not good for systems programming.

Conclusion

School of Computing and Data Science -29/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Imperative ML

still possible:

fun fact n =
let
val i = ref 1;
val xn = ref n
in
while !xn>1 do (
i :=1'i *x !xn;

Oth

Conclusion

ML makes it hard to use assignment and side-effects. But it is

xn := !xn - 1
JE
'i
end;
School of Computing and Data Science -30/38 -

Frank Kreimendahl | kreimendahlf@wit.edu



Non-object-oriented C#

C#, more than C++, tries to encourage you to adopt an
object-oriented mode. But you can still put your whole program
into static methods of a single class:

class Fubar {
public static void Main (string args[]) {
// whole program here!

Conclusion

3
b

School of Computing and Data Science -31/38 - Frank Kreimendahl | kreimendahlf@wit.edu



Functional Pascal

Any imperative language that supports recursion can be used as a
functional language:

function ForLoop(Low, High: Integer): Boolean;
begin
if Low <= High then
" begin
Conclusion {for-loop body here}
ForLoop := ForLoop(Low+l, High)
end
else
ForLoop := True
end;

School of Computing and Data Science -32/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Programming Influences Language Design

m Corrections to design problems make future dialects, as
already noted

m Programming styles can emerge before there is a language
that supports them

® Programming with objects predates object-oriented
Conclusion languages
® Automated theorem proving predates logic languages

School of Computing and Data Science -33/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Computer Architecture

m Language evolution drives and is driven by hardware

Computer

Ariecnre evolution:

. ® (Call-stack support — languages with recursion
Conclusion ® Parallel architectures — parallel languages
® Internet — Java

School of Computing and Data Science -34/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Theory of Formal Languages

m Theory of formal languages is a core mathematical area of
computer science

® Regular grammars, finite-state automata — lexical structure of
programming languages, scanner in a compiler

® Context-free grammars, pushdown automata — phrase-level
structure of programming languages, parser in a compiler

® Turing machines — Turing-equivalence of programming
languages

Conclusion

School of Computing and Data Science -35/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4 Turing Equivalence

Motivation

m Languages have different strengths, but fundamentally they
all have the same power

® {problems solvable in Java}
= {problems solvable in Fortran}

m And all have the same power as various mathematical
models of computation
® {problems solvable by Turing machine}
= {problems solvable by lambda calculus}

m Church-Turing thesis: this is what “computability” means

School of Computing and Data Science -36/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4

mming
Languages

Motivation

Conclusion

Conclusion

School of Computing and Data Science -37/38 - Frank Kreimendahl | kreimendahlf@wit.edu



4

Conclusion

mming
eS

Motivation

Conclusion

m Why programming languages are worth studying (and this
course worth taking):
® The amazing variety
The odd controversies
The intriguing evolution
The connection to programming practice
The many other connections

m Plus...there is the fun of learning three new languages!

School of Computing and Data Science -38/38 - Frank Kreimendahl | kreimendahlf@wit.edu



	Programming Languages
	Overview

	Motivation
	Variety
	Controversies
	Evolution
	Connection
	Other Connections

	Conclusion

