
COMP3350 - Programming Languages Summer 2023

Lab 9
Due: Aug 4, 2023 at the end of class

1 Lab 9 Specification

1.1 Overview

The purpose of this lab is to explore C#’s built-in garbage collector and analyze a language system’s
performance. The skeleton code at https://classroom.github.com/a/wK-gMDHK is the start of this week’s
lab. C# has an explicit call to run the garbage collector, which is very convenient to see its effects. Some
language systems run a garbage collector as needed, but give programmers no way of running it manually.
Since hardware and software setups are not identical, there will be significant differences in different people’s
final results.

If you get an error on Mac: Debugger operation failed: Synchronous operation

cancelled!, go to System Preferences → Security & Privacy → Privacy tab → Automation. There
should be a Visual Studio entry on the right. Make sure Terminal is checked.

1.1.1 Goals

1. Practice invoking C#’s garbage collector

2. Practice modifying C# code

3. Practice analyzing data in Excel

1.2 Garbage Collector Parts

The following three parts examine different behaviors in the garbage collector. For all three, you will write
some code and print out some timing results. For each part, you will also plot the timing results to visually
show the effect that the garbage collector is having. The Main method is located in GC.cs.

1.2.1 Collect All Garbage

In Part1.cs, allocate 8000 LargeObjects (using the new keyword), but don’t store their references. Print
out the timer after each allocation. Modify your code to run the default garbage collector after each 1000
allocations. Use the System.GC.Collect() call to invoke the garbage collector. For the timer, you don’t
need to create a new stopwatch each iteration – just print details of the currently running one.

Copy the command line output to Excel. In Excel, calculate the time differences between each sequential
output (time deltas) to see how much time elapsed between one allocation and the next. Create a Scatter
chart of the results (tick number vs time deltas).

This should highlight when the program took extra time between allocations, as the program was working
on garbage collection routines (or other things) at the same time. There are other demands on your CPU
so you may see unrelated spikes. If you see one or two tremendous outliers, delete them manually so that
your data is actually scattered in the y range.

Save the Excel file in the same directory as your source files and name it part1.xlsx.

1.2.2 Specified Generations

In Part2.cs, create a new array with a size of 8000 of LargeObjects. Then store a new LargeObject
in each element of the array. Print the timer after each allocation, just like in Part 1. Run the garbage
collector similarly to before – every 1000 allocations. This time, call System.GC.Collect(0) to run the
garbage collector only on the Generation 0 objects. The generation number is how many times an allocated
block has survived garbage collections. You will have to modify the call in GC.cs to invoke this code.

1 of 2

https://classroom.github.com/a/wK-gMDHK


COMP3350 - Programming Languages
Summer 2023

Lab 9
Due: Aug 4, 2023 at the end of class

In a separate Excel file from part 1, chart the resulting data points (tick number vs time deltas). You should
see the increasing time impacts with each garbage collection as the garbage collector has more allocations
to consider, but none of the memory can be freed.

Save the Excel file in the same directory as your source files and name it part2.xlsx.

1.2.3 Detecting Collections

In Part3.cs, allocate 80,000 LargeObjects, with a size of 40 rather than their default. Like in Part 1,
don’t save their references. Don’t invoke the garbage collector at all. Print the timer out after each 10
allocations. Since you are filling up the heap with objects that can be deallocated, garbage collections
should occasionally trigger during allocations.

For this part, chart the time deltas again. You should see that most allocations take about the same amount
of time, but there are isolated performance hits. Some of these are garbage collection events! From a chart
like this, we could infer the heap size and the runtime impact of garbage collection on a program. If you see
one or two outliers right near the beginning of the run, set them to an average value so the chart better fills
the y axis.

Save the Excel file in the same directory as your source files and name it part3.xlsx.

2 Submission Check

Make sure that your Excel files are correctly included in your submission. Visual Studio should automatically
adds new files to your repository if it detects them, but you will still have to commit/push the changes once
the files have been added. If you are unsure about your submission, check the available files on the Github
website.

3 Grading

Be professional. Make results easy to understand and grade. Include only those parts to be graded. Write
comments in each class and for specific methods if they are confusing or complicated.

2 of 2


	Lab 9 Specification
	Overview
	Goals

	Garbage Collector Parts
	Collect All Garbage
	Specified Generations
	Detecting Collections


	Submission Check
	Grading

