
COMP3350 - Programming Languages Summer 2023

Lab 3
Due: June 2, 2023 at 11:59PM

1 Lab 3 Specification

1.1 Overview

Relational database operations common to the SQL language supported by Access, MySQL, Oracle, and
many others are based upon the standard mathematical operations on sets of union, intersection, difference
and Cartesian product. Other operations specifically for manipulating relational databases are select, project
and join. For example, the standard SELECT operation serves to filter elements that meet some specified
criteria. In this lab and the upcoming assignment, we will implement a simple relational database using
these set-theoretic operations.

Below is a definition of the user-defined SET data type to support a simple database. The sets are defined
as lists where I is an int list, S is a string list, etc..

The SET type and the types defined in it are custom types, so the value expression I [1;2;3] constructs
the custom type, based on its definition as an int list. Similarly, you can deconstruct a custom type with
a pattern match like I myVar – this would bind myVar to [1;2;3].

You can read the SET type definition as similar to the | usage in match statements: the type SET has one of
the possible subtypes listed on the | lines.

In this lab, you will implement the Cartesian product: given two SETs, it creates all combinations of pairs
that the inputs can create. For example, the product of I×S, produces an (int, string) tuple list. The naming
of the data types hints at tuples definition: SI is a list of (String, Int) tuples, the result of S×I. SIIS is a list
of ((String, Int),(Int,String)), the result of (S×I)×(I×S), etc. Below are all required basic set definitions in
F#:

1 type SET =

2 | I of int list // I [1;2;3]

3 | S of string list // S ["a";"b";"c"]

4 | IS of (int * string) list // IS [(1, "a");(2, "b")]

5 | II of (int * int) list // II [(1,2); (3,4); (5,6)

]

6 | SS of (string * string) list // SS [("a","b"); ("c","d

")]

7 | SI of (string * int) list // SI [("a", 1); ("b", 2);

("c", 3)]

8 | SISI of ((string * int) * (string * int)) list // SISI [(("a", 1), ("b",

2)); (("c", 3), "d", 4))]

9 | SIIS of ((string * int) * (int * string)) list;; // SIIS [(("a", 1), (2, "b

")); (("c", 3), (4, "d"))]

1 of 3

COMP3350 - Programming Languages
Summer 2023

Lab 3
Due: June 2, 2023 at 11:59PM

1.2 Implementation

The skeleton code at https://classroom.github.com/a/8XA9-j9P is the start of this week’s lab. Write
and test the following functions, along with any necessary helper functions.

1.2.1 pairs

Define a pairs function that generates all possible pairs of elements from two input lists, as tuples. You can
assume that both of the lists are non-empty. The signature should be:

1 > pairs ;;

2 val it : ('a list -> 'b list -> ('a * 'b) list)

Example results, showing all possible combinations of pairs:

1 > pairs [1000;1050] ["CHEM";"MATH"];;

2 val it : (int * string) list =

3 [(1000 , "CHEM"); (1000, "MATH"); (1050, "CHEM"); (1050, "MATH")]

Hint: Write a helper function to distribute one element across every element of a list: dist 3 ["a"; "b";

"c"];; returns [(3, "a"); (3, "b"); (3, "c")]

1.2.2 product

The Cartesian product produces a set as a tuple list of two sets. Some example patterns are below.

1 let product s1 s2 =

2 match (s1 , s2) with

3 | (I s1, I s2) -> II (pairs s1 s2)

4 | (S s1, S s2) -> SS (pairs s1 s2)

5 | (I s1, S s2) -> IS (pairs s1 s2);;

Some example product runs:

1 > let i2 = I [1000; 1050];;

2 > let s2 = S ["CHEM"; "MATH"];;

3 > product i2 s2;; // IxS

4 val it : SET = IS [(1000 , "CHEM"); (1000, "MATH"); (1050, "CHEM"); (1050, "MATH"

)]

5

6 > product s2 i2;; // SxI

7 val it : SET = SI [("CHEM", 1000); ("CHEM", 1050); ("MATH", 1000); ("MATH",

1050)]

Starting with the definition above, complete defining the product for the three remaining SET cases:
SI, SIIS, and SISI. (I and S are not possible product results. You will get a warning about incomplete
matches that you can ignore!)

You can test product using the following small database, or build your own. Some products can get quite
long.

2 of 3

https://classroom.github.com/a/8XA9-j9P

COMP3350 - Programming Languages
Summer 2023

Lab 3
Due: June 2, 2023 at 11:59PM

1 let i1 = I [1111;2222;3333];;

2 let i2 = I [5555; 6666];;

3 let s1 = S ["COMP"; "HIST"; "PHYS"];;

4 let s2 = S ["CHEM"; "MATH"];;

5

6 let is = product i1 s1;;

7 let si1 = product s1 i1;;

8 let si2 = product s2 i2;;

9 let sisi = product si1 si2;;

10 let siis1 = product si1 is;;

11 let siis2 = product si2 is;;

2 Grading

Be professional. Make results easy to understand and grade. Include only those parts to be graded. Leave
comments where necessary, especially if it aids in grading.

Each of the 2 functions is worth 1
2 of the lab grade.

3 of 3

	Lab 3 Specification
	Overview
	Implementation
	pairs
	product

	Grading

