
COMP3350 - Programming Languages Summer 2023

Lab 1
Due: At the end of lab

1 Lab 1 Specification

1.1 Introduction

The skeleton code at https://classroom.github.com/a/tsYH9pia is the start of today’s lab. Follow the
setup and import directions.

In Visual Studio, open the comp3350 lab1.fs file. It contains several function definitions. Try testing out
the hello function by selecting its text and hitting ctrl-return (Mac) or alt-enter (Windows). A window
should appear beneath that shows the result of the hello function. This is the interactive prompt that you
are familiar with from class.

Enter hello "world";; on the command prompt, and you should get an appropriate response. Try modi-
fying the function to say “Goodbye” instead, and reload it into the F# Interactive window. Test that it still
behaves like you expect.

If you close Visual Studio, you can reopen any project by opening its ‘.sln’ file.

1.2 Implementation

Refer to the lec2 slides for language and syntax reminders.

Write and test the following two functions. Make sure that you test them with a range of inputs to make
sure they work the way you expect. When you write code in a file, do not include the ;; line endings. Only
include it in interactive mode.

1.2.1 GCD

GCD returns the greatest common divisor of two integers. Write the recursive function that implements
Euclid’s algorithm:

int GCD(int x, int y) {

if (y==0) return x;

else return GCD(y, x % y);

}

1 > GCD 9 18;;

2 val it : int = 9

1.2.2 factorial

The factorial function is defined as:

0! = 1

n! = n * (n - 1)!

1 > factorial 5;;

2 val it: int = 120

Notice that factorial can produce very large results – larger than the maximum value of a standard integer
value.

1 > factorial 20;;

2 val it : int = -2102132736

1 of 2

https://classroom.github.com/a/tsYH9pia


COMP3350 - Programming Languages
Summer 2023

Lab 1
Due: At the end of lab

We can fix this overflow issue by using a type that holds arbitrarily large integers – bigint. We must create
a factorial implementation that has the following signature:

1 val factorial : n:int -> bigint

Write a naive version of factorial (found in the lecture notes) and then convert the type of the return value
and anything multiplying the return value to a bigint. This is similar to the float type conversion function
we saw in class. Here is a sample of converting a value to a bigint:

1 > bigint 3;;

2 val it : System.Numerics.BigInteger = 3 {IsEven = false;

3 IsOne = false;

4 IsPowerOfTwo = false;

5 IsZero = false;

6 Sign = 1;}

When working correctly, the bigint version of factorial should be able to handle very large return values:

1 > factorial 55;;

2 val it : bigint =

3 12696403353658275925965100847566516959580321051449436762275840000000000000

4 {IsEven = true;

5 IsOne = false;

6 IsPowerOfTwo = false;

7 IsZero = false;

8 Sign = 1;}

2 Testing

With the two functions defined in interactive mode (using the same alt-enter or ctrl-return shortcut that
you used for Hello World), test the results with different parameters. We will look at more unit testing in
the future, but for now you can test the small functions manually. Assume that all inputs are ≥ 0.

Your submitted code should not include the ;; line endings – that’s just for interactive mode. Confirm that
GCD returns an int and factorial returns a bigint (which is an alias for the type System.Numerics.BigInteger).

3 Grading

To submit, follow the directions in the project setup document. You can confirm that your submission is
complete by checking that your push is visible in your repo on the Github website.

Be professional. Make results easy to understand and grade. Include only those parts to be graded. Leave
comments where necessary, especially if it aids in grading.

Each of the 2 functions is worth 50% of the lab grade.

2 of 2


	Lab 1 Specification
	Introduction
	Implementation
	GCD
	factorial


	Testing
	Grading

