
COMP3350 - Programming Languages Summer 2023

Assignment 2
Due: June 8, 2023 at 11:59PM

1 Assignment 2 Specification

1.1 Overview

1.1.1 Goals

1. Practice writing F# functions with functions as parameters

2. Practice using higher order functions like map

Patterns are a model of something; in our day-to-day experiences, we tend to categorize things by how closely
they match some pattern. For example, we enter a classroom and automatically categorize the furniture
based on our pattern of chairs and tables. This ability to recognize patterns and form categories allows us to
more rapidly make sense of our world. We enter a new classroom and instantaneously we categorize students
and chairs correctly. Seldom do we mistake a chair for a student.

Programming patterns take advantage of this natural ability to recognize patterns in problems. We use
patterns in problem-solving in at least two ways: by grouping together distinct cases of a problem, and by
abstracting (i.e. reducing) a large number of specific cases to a few general cases. By organizing problems
with patterns, our understanding of the problem is generally clearer, the solution simpler and more likely to
be correct.

For an example of abstraction, we could define the positive integer successor for each specific integer case
by:

1 let successor0 = 1;;

2 let successor1 = 2;;

3 let successor2 = 3;;

or in general by:

1 let successor n = n+1;;

F# further uses our pattern recognition and categorization ability by decomposing a single solution (e.g.
function) into separate cases or categories of solutions. The pattern syntax is generally an alternative to
if-then-else statements, something akin to the switch statement in C or Java. For example, the summation
of an integer list of numbers can be defined using patterns, where each pattern solves one specific case of the
summation problem. A non-pattern and pattern solution is given below:

1 let rec sum L =

2 if L=[] then 0

3 else if L.Tail =[] then L.Head

4 else L.Head + sum L.Tail;;

5

6 let rec sum L =

7 match L with

8 | [] -> 0

9 | h::[] -> h

10 | h::t -> h + sum t;;

The non-pattern solution requires that we first read the code to form categories in our mind to understand
to the solution. The pattern solution defines and organizes the categories visually, avoiding extra effort and
reducing the potential for our misunderstanding the solution.

1 of 5

COMP3350 - Programming Languages
Summer 2023

Assignment 2
Due: June 8, 2023 at 11:59PM

1.2 Implementation

The skeleton code at https://classroom.github.com/a/zhtTVm9F is the start of this week’s assignment.
Follow the setup and import directions to access the code. Write and test the following functions. Use
the provided unit test cases to check your solutions. Feel free to write more tests to better understand
the program, and include any helper functions you want. If you do include helper functions (like the ones
provided in this writeup) include their definitions before the function that calls them in the source code.

You may change any of the provided function signatures to specify parameters or return types, or to declare a
function as recursive, but do not change the function names or types or the number/order of parameters. For
this and future F# assignments, you should use no library calls besides .Head and .Tail. There are some
libraries that have helpful features, but you should practice implementing functions from simple language
constructs.

1.2.1 dup

Define the function dup that takes two parameters: a function, and an input value. It should apply the
function twice: first on the input value, and afterwards on the result of the function’s first evaluation. See
examples below for expected behavior.

1 > let inc (x : int) : int = x + 1;;

2

3 > dup inc 5;;

4 val it : int = 7

5

6 > let tail (L : 'a list) = L.Tail;;

7

8 > dup tail [1;2;3;4;5];;

9 val it : int list = [3;4;5]

10

11 > let sq (x:int) = x * x;;

12

13 > dup sq 5;;

14 val it : int = 625

1.2.2 iterF

An iterated function – written mathematically as fn(x) – is a function that is applied over and over to an
input x. For example, f3(x) ≡ f(f(f(x))), and f0(x) ≡ x. The dup function above is calculating an iterated
function for the specific case of n = 2. Define the generalized function iterF to take n as a parameter
instead of assuming it’s 2. We expect it to behave the same as dup when we call it with n = 2. (Interesting
application: Images of fractals are generated using iterated functions.)

1 > let inc (x : int) : int = x + 1;;

2

3 > iterF inc 5 2;;

4 val it : int = 7

5

6 > iterF inc 5 4;;

7 val it : int = 9

8

9 > let tail (L : 'a list) = L.Tail;;

10

11 > iterF tail [1;2;3;4;5] 0;;

12 val it : int list = [1; 2; 3; 4; 5]

13

14 > iterF tail [1;2;3;4;5] 3;;

15 val it : int list = [4; 5]

2 of 5

https://classroom.github.com/a/zhtTVm9F

COMP3350 - Programming Languages
Summer 2023

Assignment 2
Due: June 8, 2023 at 11:59PM

1.2.3 comp

Define the function comp so that comp f g x is g(f (x)) where f’s parameter and x are the same type,
and g’s parameter is the return type of f. Note that the parameter order swaps around the function names
from what you might expect, and that not all of the types are guaranteed to be identical.

1 > let above10 x = x > 10;;

2

3 > let inc (x : int) : int = x + 1;;

4

5 > above10 14;;

6 val it : bool = true

7

8 > comp inc inc 5;;

9 val it : int = 7

10

11 > comp inc above10 10;;

12 val it : bool = true

1.2.4 sqlist

Define a function sqlist to square every element of a given list using sq and the map functional (both
defined below).

1 > sqlist [1;2;3;4];;

2 val it : int list = [1;4;9;16]

Use:

1 > let sq x = x * x;;

2

3 > let rec map f L =

4 match L with

5 | [] -> []

6 | h::t -> f h::map f t;;

State a runtime complexity estimate (e.g. O(1), O(n), O(n2), etc.) using the sqlistComplexity method.

1.2.5 vecadd

Define a function vecadd to add two integer lists using map2 and add (both defined below). Assume that
the input vectors are the same length.

1 > vecadd [1;2;3] [4;5;6];;

2 val it : int list = [5;7;9]

Use:

1 > let add x y = x + y;;

2

3 > let rec map2 f L1 L2 =

4 match (L1 ,L2) with

5 | ([], []) -> []

6 | (h1::t1, h2::t2) -> f h1 h2::map2 f t1 t2;;

3 of 5

COMP3350 - Programming Languages
Summer 2023

Assignment 2
Due: June 8, 2023 at 11:59PM

1.2.6 matadd

Define a function matadd to add two integer matrices using vecadd for vector addition and map2 for recursion.
matadd is a one line function. Assume that the input matrices have the same dimensions.

1 > matadd [[1;2]; [3;4]] [[5;6]; [7;8]];;

2 val it : int list list = [[6;8]; [10;12]]

1.2.7 ip

Define a function ip to compute the inner product of two lists using map2 and foldback. The inner product
is the sum of the products of multiplying matching elements in two lists. In the class notes we defined
functions such that foldback add [1;2;3] 0 = 6 and map2 mul [1;2;3] [4;5;6] = [4;10;18]. ip is a
one line function. Assume that the two lists have the same length.

1 > ip [1;2;3] [1;2;3];; // = 1*1 + 2*2 + 3*3

2 val it : int = 14

Use:

1 > let rec foldback f L a =

2 match L with

3 | [] -> a

4 | h::t -> f h (foldback f t a);;

1.2.8 fizzbuzz

Define a function fizzbuzz to build a list that solves the specific variant of the FizzBuzz problem that
follows: generate a string list of sequential integers (from 1 to n), with some special cases. If the number
is divisble by 3, the value should be “fizz”. If the number is divisible by 5, the value should be “buzz”. If the
number is divisible by 3 and 5, the value should be “fizzbuzz”. Otherwise, the value should be the normal
string representation of the integer. Use the map function and any other helper functions you need.

1 > fizzbuzz 5;;

2 val it : string list = ["1"; "2"; "fizz"; "4"; "buzz"]

3 > fizzbuzz 20;;

4 val it : string list =

5 ["1"; "2"; "fizz"; "4"; "buzz"; "fizz"; "7"; "8"; "fizz"; "buzz"; "11";

6 "fizz"; "13"; "14"; "fizzbuzz"; "16"; "17"; "fizz"; "19"; "buzz"]

Hint: Like Java, break the program down into smaller pieces and verify that each piece works.

2 Testing

Unit testing is supplied for this assignment. These are not exhaustive tests and you should try running
the functions with other valid arguments as well. The tests give a strong indication as to which types are
expected for function parameters and return values.

Mac directions:

1. Go to View→Pads→Unit Tests and a new window should open

2. Click the ‘Run All’ button and you should get unit-by-unit feedback on test results.

Windows directions:

4 of 5

COMP3350 - Programming Languages
Summer 2023

Assignment 2
Due: June 8, 2023 at 11:59PM

1. Go to the Solution explorer window.

2. Right-click on the top line in the window: Solution ‘comp3350 a2’ file→Build Solution.

3. Go to Test→Windows→Test Explorer.

4. The test names should appear in the Test Explorer window, and you can run them by clicking Run
All in the Test Explorer window.

3 Grading

Be professional. Make results easy to understand and grade. Include only those parts to be graded. Leave
comments where necessary, especially if it aids in grading.

Each of the 8 functions is worth about 1
8 of the assignment grade.

5 of 5

	Assignment 2 Specification
	Overview
	Goals

	Implementation
	dup
	iterF
	comp
	sqlist
	vecadd
	matadd
	ip
	fizzbuzz

	Testing
	Grading

